【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,進(jìn)行了如下探索活動(dòng).
問(wèn)題原型:如圖(1),在矩形ABCD中,AB=6,AD=8,P、Q分別是AB、AD邊的中點(diǎn),以AP、AQ為鄰邊作矩形APEQ,連接CE,則CE的長(zhǎng)為 (直接填空)
問(wèn)題變式:(1)如圖(2),小明讓矩形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)E恰好落在AD上,連接CE、DQ,請(qǐng)幫助小明求出CE和DQ的長(zhǎng),并求DQ:CE的值.
(2)如圖(3),當(dāng)矩形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至如圖(3)位置時(shí),請(qǐng)幫助小明判斷DQ:CE的值是否發(fā)生變化?若不變,說(shuō)明理由.若改變,求出新的比值.
問(wèn)題拓展:若將“問(wèn)題原型”中的矩形ABCD改變?yōu)槠叫兴倪呅?/span>ABCD,且AB=3,AD=7,∠B=45°,P、Q分別是AB、AD邊上的點(diǎn),且AP=AB,AQ=AD,以AP、AQ為鄰邊作平行四邊形APEQ.當(dāng)平行四邊形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至如圖(4)位置時(shí),連接CE、DQ.請(qǐng)幫助小明求出DQ:CE的值.
【答案】問(wèn)題原型:(1)CE=5;問(wèn)題變式:(1)CE=3,DQ=,DQ:CE=4:5;(2)不變,見(jiàn)解析;問(wèn)題拓展:=
【解析】
問(wèn)題原型:如圖1中,延長(zhǎng)PE交CD于H,則四邊形QEHD是矩形.在Rt△CEH中,利用勾股定理即可解決問(wèn)題;
問(wèn)題變式:(1)如圖2中,作FQ⊥AD于F.利用勾股定理相似三角形的性質(zhì),分別求出CE、DQ即可解決問(wèn)題;
(2)不變.理由如下:連接AE、AC.只要證明△ACE∽△ADQ,列比例式即可解決問(wèn)題;
問(wèn)題拓展:在圖4中,計(jì)算AC的長(zhǎng),同理得△ACE∽△ADQ,通過(guò)計(jì)算即可解決問(wèn)題.
問(wèn)題原型:
如圖1中,延長(zhǎng)PE交CD于H,則四邊形QEHD是矩形,
在Rt△CEH中,EH=DQ=4,CH=PB=AP=3,
∴CE==5,
故答案為:5;
問(wèn)題變式:
(1)如圖2中,過(guò)Q作QF⊥AD于F,
在矩形APEQ中,∵AP=3,EP=4,
∴AE=5,ED=8﹣5=3,
在Rt△CED中,CE==3,
∵∠QAF=∠QAE,∠AFQ=∠AQE=90°,
∴△AQF∽△AEQ,
∴,
∴,
∴FQ=,
∴AF=,
∴DF=8﹣=,
由勾股定理得:DQ=,
∴DQ:CE=:3=4:5;
(2)不變,理由如下:連接AE、AC,
由旋轉(zhuǎn)可知:∠QAD=∠EAC,
由勾股定理可知:AC=10,AE=5,
∴,,
∴ ,
∴△ACE∽△ADQ,
∴;
問(wèn)題拓展:如圖4中,過(guò)A作AH⊥BC于H,連接AC,
∵∠B=45°,
∴△ABH是等腰直角三角形,
∵AB=3,
∴AH=BH=3
∴CH=7﹣3=4,
由勾股定理得:AC==5,
∴,
如圖5,連接AE、AC,
同理APEQ中,AP=,PE=,得AE=,
∴,
由旋轉(zhuǎn)得:∠QAD=∠EAC,
∴△ACE∽△ADQ,可得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從熱氣球C處測(cè)得地面A,B兩點(diǎn)的俯角分別是30°、45°,如果此時(shí)熱氣球C處的高度CD為100米,點(diǎn)A,D,B在同一直線上,則AB兩點(diǎn)的距離是( )
A.200米
B.200 米
C.220 米
D.100( )米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知:點(diǎn)A(0,0),B( ,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1 , 第2個(gè)△B1A2B2 , 第3個(gè)△B2A3B3 , …,則第n個(gè)等邊三角形的邊長(zhǎng)等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù) 的圖象經(jīng)過(guò)點(diǎn)( ,8),直線y=﹣x+b經(jīng)過(guò)該反比例函數(shù)圖象上的點(diǎn)Q(4,m).
(1)求上述反比例函數(shù)和直線的函數(shù)表達(dá)式;
(2)設(shè)該直線與x軸、y軸分別相交于A、B兩點(diǎn),與反比例函數(shù)圖象的另一個(gè)交點(diǎn)為P,連接0P、OQ,求△OPQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,F(xiàn)是BC上的一點(diǎn),直線DF與AB的延長(zhǎng)線相交于點(diǎn)E,BP∥DF,且與AD相交于點(diǎn)P,則圖中相似三角形的組數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)請(qǐng)?jiān)跈M線上填寫合適的內(nèi)容,完成下面的證明:
如圖①如果AB∥CD,求證:∠APC=∠A+∠C.
證明:過(guò)P作PM∥AB.
所以∠A=∠APM,( )
因?yàn)?/span>PM∥AB,AB∥CD(已知)
所以∠C= ( )
因?yàn)椤?/span>APC=∠APM+∠CPM
所以∠APC=∠A+∠C(等量代換)
(2)如圖②,AB∥CD,根據(jù)上面的推理方法,直接寫出∠A+∠P+∠Q+∠C= .
(3)如圖③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,則m= (用x、y、z表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=70°,以B為圓心,任意長(zhǎng)為半徑畫(huà)弧交AB,BC于點(diǎn)E,F(xiàn),再分別以點(diǎn)E,F(xiàn)為圓心、以大于EF長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn)D,則∠BDC為( 。┒龋
A. 65 B. 75 C. 80 D. 85
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過(guò)A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖②位置時(shí)(BD<CE), 其余條件不變, 問(wèn)BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)給予證明;
(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖③位置時(shí)(BD>CE), 其余條件不變, 問(wèn)BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)直接寫出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BD與DE,CE的數(shù)量關(guān)系。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com