【題目】如圖,在平面直角坐標系中,A(a,0),B(b,0),C(﹣1,2),且|2a﹣b+8|+(a+b﹣2)2=0.
(1)求a、b的值;
(2)如圖1,點G在y軸上,三角形COG的面積是三角形ABC的面積的,求出點G的坐標;
(3)如圖2,過點C作CD⊥y軸交y軸于點D,點P為線段CD延長線上的一個動點,連接OP、AC、DB,OE平分∠AOP,OF⊥CE,若∠OPD+k∠DOF=k(∠FOP+∠AOE),現(xiàn)將四邊形ABDC向下平移k個單位得到四邊形A1B1D1C1,已知AM+BN =k,求圖中陰影部分的面積.
【答案】(1)a=﹣2,b=4;(2)G(0,6)或(0,﹣6);(3)S陰=.
【解析】
(1)利用非負數(shù)的性質(zhì)即可解決問題;
(2)過點C作CT⊥AB于T.根據(jù)面積關系求出OG的長即可解決問題;
(3)設∠AOE=x,則∠AOP=2∠AOE=2x,∠POB=180°-2x,由CD∥AB,推出∠OPD=∠POB=180°-2x,由∠DOF=∠AOE,推出∠OPD+k∠DOF=k∠FOP+k∠AOE,推出∠OPD=k∠FOP,可得180°-2x=k(90°-x),推出k=2,即可解決問題.
(1)∵|2a﹣b+8|+(a+b﹣2)2=0,
又∵|2a﹣b+8|≥0,(a+b﹣2)2≥0,
∴,
解得,
∴a=﹣2,b=4.
(2)如圖1中,過點C作CT⊥AB于T.
∵C(﹣1,2),
∴CT=2,
∵S△ABC=×6×2=6,
∴S△OCG=×1×OG=3,
∴OG=6,
∴G(0,6)或(0,﹣6).
(3)如圖2中,
設∠AOE=x,
∵OE平分∠AOP,
∴∠AOP=2∠AOE=2x,
∵∠AOB=180°,
∴∠POB=180°﹣2x,
∵CD⊥y軸,AB⊥y軸,
∴∠CDO=∠DOB=90°,
∴CD∥AB,
∴∠OPD=∠POB=180°﹣2x,
∵OF⊥OE,
∴∠FOP=90°﹣x,
∵∠AOD=90°,
∴∠AOE+∠EOD=∠DOF+∠EOD=90°,
∴∠DOF=∠AOE,
∴∠OPD+k∠DOF=k∠FOP+k∠AOE,
∴∠OPD=k∠FOP,
∴180°﹣2x=k(90°﹣x),
∴k=2,
∴,
∴AM+BN=,
∴S陰=S四邊形MNB1A1=.
科目:初中數(shù)學 來源: 題型:
【題目】臺風是一種自然災害,它以臺風中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強的破壞力。如圖,有一臺風中心沿東西方向AB由點A行駛向點B,已知點 C為一海港,且點 C與直線 AB上兩點A,B的距離分別為300km和400km,又 AB=500km,以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域。
(1)海港C受臺風影響嗎?為什么?
(2)若臺風的速度為20km/h,臺風影響該海港持續(xù)的時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,AB=6,BC=8,E為直線BC上一點.
(1)如圖1,當E在線段BC上,且DE=AD時,求BE的長;
(2)如圖2,點E為BC延長長線上一點,若BD=BE,連接DE,M為ED的中點,連接AM,CM,求證:AM⊥CM;
(3)如圖3,在(2)條件下,P,Q為AD邊上的兩個動點,且PQ=5,連接PB、MQ、BM,求四邊形PBMQ的周長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點A,與y軸交于點B,與直線y2=x交于點E,點E的橫坐標為3.
(1)直接寫出b的值:b=______;
(2)當x取何值時,0<y1≤y2?
(3)在x軸上有一點P(m,0),過點P作x軸的垂線,與直線交于點C,與直線y2=x交于點D,若CD=2OB,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作發(fā)現(xiàn):
(1)如圖,在平面直角坐標系中有一點,將點先向右平移3個單位長度,再向下平移3個單位長度得到點,則點的坐標為 ;并在圖中畫出直線的函數(shù)圖象;
(2)直接寫出直線的解析式 ;
(3)若直線上有一動點,設點的橫坐標為.
①直接寫出點的坐標 ;
②若點位于第四象限,直接寫出三角形的面積 .(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為傳播奧運知識,小剛就本班學生對奧運知識的了解程度進行了一次調(diào)查統(tǒng)計:A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:
(1)在條形圖中,將表示“一般了解”的部分補充完整;
(2)在扇形統(tǒng)計圖中,計算出“了解較多”部分所對應的圓心角的度數(shù)為______;
(3)如果全年級共1000名同學,請你估算全年級對奧運知識“了解較多”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列命題:①兩條直線被第三條直線所截,同位角相等;②0.1的算術平方根是0.01;③算術平方根等于它本身的數(shù)是1;④如果點P(3-2n,1)到兩坐標軸的距離相等,則n=1;⑤若a2=b2,則a=b;⑥若=,則a=b.其中假命題的個數(shù)是( 。
A. 3個B. 4個C. 5個D. 6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com