如圖,黎叔叔想用60m長的籬笆靠墻MN圍成一個矩形花圃ABCD,已知墻長MN=30m.
(1)能否使矩形花圃ABCD的面積為400m2?若能,請說明圍法;若不能,請說明理由.
(2)請你幫助黎叔叔設(shè)計一種圍法,使矩形花圃ABCD的面積最大,并求出最大面積.
(1)能,長為20m,寬為20m;(2)長為30m,寬為15m時,面積最大為:450.
【解析】
試題分析:(1)由于籬笆總長為30m,設(shè)垂直于墻的AB邊長為m,由此得到BD=()m,接著根據(jù)題意列出方程,解方程即可求出AB的長;
(2)根據(jù)(1)得到矩形花圃ABCD的面積為,求出此函數(shù)的最值即可.
試題解析:(1)依題意可知:AB邊長為m,由此得到BD=()m,∴,解得:,.當(dāng)時,BD==20,當(dāng)時,BD==40>30,∵墻可利用的最大長度為15m,∴舍去.∴AB的長為20m,BD的長為20m;
(2)設(shè)AB邊長為m,花圃的面積為,則.
∴當(dāng)時,.而當(dāng)時,BD==30,可以構(gòu)成矩形.
∴當(dāng)時,BD==30,可以構(gòu)成的矩形的面積最大,為450.
考點:1.一元二次方程的應(yīng)用;2.二次函數(shù)的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||
B、2a | ||
C、a | ||
D、3a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||
B、5cm | ||
C、4cm | ||
D、3cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com