如圖,在△ABC中,∠B的平分線與∠C的外角平分線相交于D,DG∥BC交AC,AB于F,G.求證:GF=BG-CF.
考點(diǎn):等腰三角形的判定與性質(zhì)
專題:證明題
分析:先證明∠ABD=∠GDB,∠ACD=∠FDC,得出BG=DG,CF=DF,從而證出GF=BG-CF.
解答:解:∵BD平分∠ABC,CD平分∠ACE,
∴∠ABD=∠CBD,∠ACD=∠ECD,
∵DG∥BC,
∴∠GDB=∠CBD,∠FDC=∠ECD,
∴∠ABD=∠GDB,∠ACD=∠FDC,
∴BG=DG,CF=DF,
∵GF=DG-DF,
∴GF=BG-CF.
點(diǎn)評(píng):本題考查了平行線的性質(zhì)、角平分線的定義以及等腰三角形的判定;弄清角之間的相等關(guān)系證出相等線段是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,MP和NQ分別垂直平分AB和AC,若∠PAQ=40°,則∠BAC的度數(shù)是(  )
A、140°B、110°
C、100°D、70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的邊長(zhǎng)不變,BC邊上的高AH的長(zhǎng)為x在變化,若BC的長(zhǎng)為8,則△ABC的面積y與x之間的函數(shù)關(guān)系式為
 
.其中常量是
 
,變量是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,甲、乙二人沿著邊長(zhǎng)為90米的正方形,按A→B→C→D→A…的方向運(yùn)行,甲從A以72米/分的速度行走,乙從B以57米/分的速度行走.
(1)幾分鐘后,甲第一次追上乙?
(2)當(dāng)甲第一次追上乙時(shí),是在正方形哪條邊上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的邊AD長(zhǎng)為2,AB長(zhǎng)為1,點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)是-1,以A點(diǎn)為圓心,對(duì)角線AC長(zhǎng)為半徑畫弧,交數(shù)軸于點(diǎn)E,則這個(gè)點(diǎn)E表示的實(shí)數(shù)是( 。
A、
5
+1
B、
5
C、
5
-1
D、1-
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)O(0,0),A(2,2),若存在格點(diǎn)P,使△APO為等腰直角三角形,則點(diǎn)P的個(gè)數(shù)為(  )
A、4B、5C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,C島在A島的北偏東55°的方向,B島在A島的北偏東75°的方向,C島在B島的北偏西35°的方向.∠ACB的平分線CM交AB于點(diǎn)M.
(1)求∠ACB的度數(shù);
(2)求點(diǎn)M在點(diǎn)C的什么方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某服裝店以每件40元的價(jià)格購(gòu)進(jìn)一批襯衫,在試銷過(guò)程中統(tǒng)計(jì)發(fā)現(xiàn),每月的銷售量y(件)與銷售單價(jià)x(其中x為正整數(shù),且50≤x≤75)(元)之間有下表關(guān)系:
銷售單價(jià)x(元)505560657075
每月銷售量y(件)1601401201008060
(1)若y與x之間的函數(shù)關(guān)系是下列函數(shù)關(guān)系之一,則y是x的
 

(A)正比例函數(shù)(B)一次函數(shù)(C)反比例函數(shù)(D)二次函數(shù)
(2)求y與x的函數(shù)關(guān)系式;
(3)如果不考慮其它費(fèi)用,該店銷售這種襯衫的月利潤(rùn)為1600元,這種襯衫的銷售單價(jià)應(yīng)定為多少元?
(4)如果每銷售一件襯衫需要支出各種費(fèi)用2元,設(shè)服裝店每月銷售這種襯衫獲利為w元,銷售單價(jià)為多少元時(shí),服裝店獲利w最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)軸上,與-3表示的點(diǎn)相距4個(gè)單位的點(diǎn)所對(duì)應(yīng)的數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案