【題目】小明與甲、乙兩人一起玩“手心手背”的游戲.他們約定:如果三人中僅有一人出“手心”或“手背”,則這個人獲勝;如果三人都出“手心”或“手背”,則不分勝負,那么在一個回合中,如果小明出“手心”,則他獲勝的概率是多少?(請用“畫樹狀圖”或“列表”等方法寫出分析過程)

【答案】解:畫樹狀圖得:
∵共有4種等可能的結(jié)果,在一個回合中,如果小明出“手心”,則他獲勝的有1種情況,
∴他獲勝的概率是:
【解析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與他獲勝的情況,再利用概率公式求解即可求得答案.
【考點精析】掌握列表法與樹狀圖法是解答本題的根本,需要知道當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某市對一大型超市銷售的甲、乙、丙3種大米進行質(zhì)量檢測.共抽查大米200袋,質(zhì)量評定分為A、B兩個等級(A級優(yōu)于B級),相應(yīng)數(shù)據(jù)的統(tǒng)計圖如下:
根據(jù)所給信息,解決下列問題:
(1)a= , b=;
(2)已知該超市現(xiàn)有乙種大米750袋,根據(jù)檢測結(jié)果,請你估計該超市乙種大米中有多少袋B級大米?
(3)對于該超市的甲種和丙種大米,你會選擇購買哪一種?運用統(tǒng)計知識簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀材料)

,即2<3,

∴1<<2.

﹣1的整數(shù)部分為1.

﹣1的小數(shù)部分為﹣2

(解決問題)9的小數(shù)部分是   

我們還可以用以下方法求一個無理數(shù)的近似值.

閱讀理解:求的近似值.

解:設(shè)=10+x,其中0<x<1,則107=(10+x)2,即107=100+20x+x2

因為0<x<1,所以0<x21,所以107≈100+20x,解之得x0.35,即的近似值為10.35.

理解應(yīng)用:利用上面的方法求的近似值(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】媽媽買回6個粽子,其中1個花生餡,2個肉餡,3個棗餡.從外表看,6個粽子完全一樣,女兒有事先吃.
(1)若女兒只吃一個粽子,則她吃到肉餡的概率是;
(2)若女兒只吃兩個粽子,求她吃到的兩個都是肉餡的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設(shè)點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.

(1)求點Q運動的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+2k-2=0有兩個不相等的實數(shù)根.求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要測量旗桿高CD , 在B處立標桿AB=2.5cm,人在F處.眼睛E、標桿頂A、旗桿頂C在一條直線上.已知BD=3.6m,FB=2.2m,EF=1.5m.求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程:2x2=5x+3的根是(   。
A.x1=-6,x2=1
B.x1=3,x2=-1
C.x1=1,x2=
D.x1= - ,x2=3

查看答案和解析>>

同步練習冊答案