【題目】如圖,Rt△ABC中,∠ACB=90°,AC=1,∠B=30°,且AC邊在直線l上,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)到位置①可得到點(diǎn)P1,此時;將位置①的三角形繞點(diǎn)P1順時針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時;將位置②的三角形繞點(diǎn)P2順時針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時;……,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)為止,則=___________.
【答案】2012+671.
【解析】
仔細(xì)審題,發(fā)現(xiàn)將Rt△ABC繞A順時針旋轉(zhuǎn),每旋轉(zhuǎn)一次,AP的長度依次增加2,,1,且三次一循環(huán),按此規(guī)律即可求解.
解:如圖所示,
∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,
∴AB=2,BC=,
∵由旋轉(zhuǎn)的性質(zhì)可知:△ABC≌△AP1E
∴AB=AP1=2,
∵△ABC≌FP1P2,
∴P1P2=BC,
∴AP2=2+,
同理可的:AP3=3+,
∵2012÷3=670…2,
∴AP2012=670×(3+)+2+=2012+671.
故答案為:2012+671.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】猜想與證明:
觀察下列各個等式的規(guī)律:
第一個等式:
第二個等式:
第三個等式:
第四個等式:
請用上述等式反映出的規(guī)律猜想并證明:
(1)直接寫出第五個等式;
(2)問題解決:猜想第 n 個等式(n≥1,用 n 的代數(shù)式表示),并證明你猜想的等式是正確的
(3)一個容器裝有11水,按照如下要求把水倒出:第1次倒出 水,第2次倒出的水量是L水的,第3次倒出的水量是水的,第4次倒出的水量是水的,……第次倒出的水量是L水的,…按照這種倒水的方法,求倒n次水倒出的總水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30o,點(diǎn)A1、A2、A3 在射線ON上,點(diǎn)B1、B2、B3…..在射線OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為“今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?”該問題的答案是________步.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形的鐵片ABC的兩條直角邊BC,AC的長分別為3cm和4cm,如圖所示分別采用⑴,⑵兩種方法,剪去一塊正方形鐵片,為了使剪去正方形鐵片后剩下的邊角料較少,試比較哪一種剪法較為合理,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長,交AB延長線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD= ______ °時,四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三點(diǎn)在⊙O上,直徑BD平分∠ABC,過點(diǎn)D作DE∥AB交弦BC于點(diǎn)E,在BC的延長線上取一點(diǎn)F,使得EFDE.
(1)求證:DF是⊙O的切線;
(2)連接AF交DE于點(diǎn)M,若 AD4,DE5,求DM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于A(-1,0),B(3,0)兩點(diǎn),與軸交于點(diǎn)C,頂點(diǎn)為D,下列結(jié)論正確的是( )
A. abc<0 B. 3a+c=0 C. 4a-2b+c<0 D. 方程ax2+bx+c=-2(a≠0)有兩個不相等的實數(shù)根
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com