【題目】如圖,的直徑,點(diǎn)是圓上一點(diǎn),,垂足為點(diǎn),于點(diǎn),且

1)若點(diǎn)的中點(diǎn),求證:;

2)求證:的切線;

3)若的半徑為10,,求的值.

【答案】1)見解析;(2)見解析;(3

【解析】

1)利用SAS證明BOF≌△CEF即可證得CE=BO;

2)先證明∠OCB=D,因?yàn)椤?/span>DCF+D=90°,所以∠DCF+OCB=90°CDCD,因?yàn)?/span>OC是⊙O的半徑,所以CD是⊙O的切線

3)在RtOCF中,已知OC=10,可求得,根據(jù)勾股定理OF=6

證明RtOFCRtOCD,得出,即可求出OD,進(jìn)而求出DE,即可求出

1)∵ODBC,OE是⊙O的半徑

∴∠BFO=CFE=90°,BF=CF

FOE的中點(diǎn)

EF=OF

BOFCEF

∴△BOF≌△CEFSAS

CE=BO

2)如圖,連接OC

OB=OC

∴∠OCB=B

∵∠B=AEC,∠D=AEC

∴∠B=D

∴∠OCB=D

ODBC

∴∠DCF+D=90°

∴∠DCF+OCB=90°即∠OCD=90°

CDCD

OC是⊙O的半徑

CD是⊙O的切線

3)在RtOCF中,OC=10

ODBCOE是⊙O的半徑

∴在RtOCF中,

∵∠COF=DOC,∠OFC=OCD=90°

RtOFCRtOCD

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某市市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從:自行車,:家庭汽車,:公交車,:電動(dòng)車,:其他五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖回答下列問題:

1)本次調(diào)查中,一共調(diào)查了 名市民;扇形統(tǒng)計(jì)圖中,項(xiàng)對應(yīng)的扇形圓心角是 °;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若甲、乙兩人上班時(shí)從四種交通工具中隨機(jī)選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,原點(diǎn)O關(guān)于直線y=﹣x+4對稱點(diǎn)O1的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長線交⊙于點(diǎn),交的延長線于點(diǎn),連接,且恰好,連接于點(diǎn),延長于點(diǎn),連接

1)求證:是⊙的切線;

2)求證:點(diǎn)的中點(diǎn);

3)當(dāng)⊙的半徑為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

我們知道若一個(gè)矩形的周長固定,當(dāng)相鄰兩邊相等,即為正方形時(shí),面積是最大的,反過來,若一個(gè)矩形的面積固定,它的周長是否會(huì)有最值呢?

方法探究:

用兩條直角邊分別為、的四個(gè)全等的直角三角形,可以拼成一個(gè)正方形,

,可以拼成如圖1的正方形,從而得到,即;

,可以拼成如圖2的正方形,從而得到,即

于是我們可以得到結(jié)論:為正數(shù),總有,且當(dāng)時(shí),代數(shù)式取得最小值為

另外,我們也可以通過代數(shù)式運(yùn)算得到類似上面的結(jié)論.

,

∴對于任意實(shí)數(shù),,總有,

且當(dāng)時(shí),代數(shù)式取得最小值為

類比應(yīng)用:

1)對于正數(shù),,試比較的大小關(guān)系,并說明理由.

2)填空:

當(dāng)時(shí),________

代數(shù)式有最________值為________

問題解決:

3)若一個(gè)矩形的面積固定為,它的周長是否會(huì)有最值呢?若有,求出周長的最值,及此時(shí)矩形的長和寬;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx3A10),B(﹣3,0),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)Pm,n)是線段AD上的動(dòng)點(diǎn).

1)求直線AD及拋物線的解析式;

2)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長度lm的關(guān)系式,m為何值時(shí),PQ最長?

3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P,QD,R為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過AABx軸,截取AB=OA(BA右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.

(1)求反比例函數(shù)y=的表達(dá)式;

(2)求點(diǎn)B的坐標(biāo);

(3)求OAP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABACAD是高,AM是△ABC外角∠CAE的平分線.以點(diǎn)D為圓心,適當(dāng)長為半徑畫弧,交DA于點(diǎn)G,交DC于點(diǎn)H.再分別以點(diǎn)G、H為圓心,大于GH的長為半徑畫弧,兩弧在∠ADC內(nèi)部交于點(diǎn)Q,連接DQ并延長與AM交于點(diǎn)F,則△ADF的形狀是( 。

A.等腰三角形B.等邊三角形

C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)重合,將三角板繞點(diǎn)旋轉(zhuǎn),三角板的兩直角邊分別交或它們的延長線)于點(diǎn),設(shè),下列四個(gè)結(jié)論:①;② ;④,正確的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案