【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.

1)求圓弧所在的圓的半徑r的長;

2)當洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?

【答案】(1)r=34;(2不需要采取緊急措施.

【解析】試題分析:(1)連結OA,利用r表示出OD的長,在Rt△AOD中根據(jù)勾股定理求出r的值即可;

(2)連結OA′,在Rt△A′EO中,由勾股定理得出A′E的長,進而可得出A′B′的長,據(jù)此可得出結論.

試題解析:(1)連結OA,

由題意得:AD=AB=30,OD=(r-18)

Rt△ADO中,由勾股定理得:r2=302+(r-18)2,

解得,r=34;

(2)連結OA′,

∵OE=OP-PE=30,

∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2-OE2,即:A′E2=342-302

解得:A′E=16.

∴A′B′=32.

∵A′B′=32>30,

∴不需要采取緊急措施.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分12如圖,在平面直角坐標系xOy中,將拋物線的對稱軸繞著點P2順時針旋轉45°后與該拋物線交于A、B兩點,點Q是該拋物線上的一點.

1求直線AB的函數(shù)表達式;

2如圖,若點Q在直線AB的下方,求點Q到直線AB的距離的最大值;

3如圖,若點Qy軸左側,且點T0,tt<2是直線PO上一點,當以P、B、Q為頂點的三角形與PAT相似時,求所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是四邊形的對角線,AD//BC,,分別過點,垂足分別為點,若,則圖中全等的三角形有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,還需再添加兩個條件才能使,則不能添加的一組條件是(

A. AC=DE,∠C=EB. BD=AB,AC=DE

C. AB=DB,∠A=DD. C=E,∠A=D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(﹣3,﹣1).

1)將△ABC沿y軸正方向平移3個單位得到△A1B1C1,畫出△A1B1C1,并寫出點B1坐標;

2)畫出△A1B1C1以點O為旋轉中心、順時針方向旋轉90度的△A2B2C2,并求出點C1經(jīng)過的路徑的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、D在反比例函數(shù)的圖像上,點B、C在反比例函數(shù)的圖像上,若ABCD軸,軸,且,,,則=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】東臺西瓜食口風味極佳,特別是品牌“王炸”瓜因皮薄肉嫩含水豐富,刀一碰即快速裂開,享譽市場.吳總將一批品牌“王炸”瓜從我市三倉鎮(zhèn)運往南京市場進行銷售,根據(jù)經(jīng)驗,駕駛貨車以60千米/小時的平均速度要4小時到達南京市場.

(1)求劉總駕駛貨車的汽車速度v(千米/小時)與時間t(小時)之間的函數(shù)關系式;

(2)早晨500從三倉鎮(zhèn)出發(fā),以80千米/小時的平均速度行駛,大概幾點到南京市場;

(3)若返回時,劉總全程走高速公路,且勻速行駛,根據(jù)規(guī)定:最高車速不得超過每小時100公里,最低車速不得低于每小時60公里,試問返程時間的范圍是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某初中學校欲向高一級學校推薦一名學生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學生民主投票,每人只能推薦一人(不設棄權票),選出了票數(shù)最多的甲、乙、丙三人.投票結果統(tǒng)計如圖一:

其次,對三名候選人進行了筆試和面試兩項測試.各項成績?nèi)缬冶硭荆簣D二是某同學根據(jù)上表繪制的一個不完整的條形圖.請你根據(jù)以上信息解答下列問題:

1)補全圖一和圖二.

2)請計算每名候選人的得票數(shù).

3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照253的比確定,計算三名候選人的平均成績,成績高的將被錄取,應該錄取誰?

測試項目

測試成績/

筆試

92

90

95

面試

85

95

80

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,,的垂直平分線交于點,的垂直平分線交于點,,則______.

查看答案和解析>>

同步練習冊答案