【題目】如圖,已知直線l的函數表達式為y=x+6,且l與x軸、y軸分別交于A、B兩點,動點Q從B點開始在線段BA上以每秒2個單位的速度向點A移動,同時動點P從A點開始在線段AO上以每秒1個單位的速度向O點移動,設點Q、P移動時間為t秒.
(1)求點A、B的坐標
(2)當以點A、P、Q為頂點的三角形是等腰三角形時,求時間t的值.
【答案】(1)A(8,0) B(0,6);(2),,
【解析】
(1)根據自變量與函數值的對應關系,可得相應的函數值,相應自變量的值;
(2)根據相似三角形的性質,可得關于t的方程,根據解方程,可得答案.
(1)∵直線的表達式為y=x+6,
令x=0,得y=6,
∴B(0,6),
令y=0,得0=x+6,
∴x=8,
∴ A(8,0) ;
(2)∵∠BOA=90°,
BO=6,AO=8,
∴AC=10,
由題意可知BQ=2t,AQ=10-2t,AP=t,
①當AQ=AP時,10-2t=t,
∴;
②當PQ=AP時,
過點P作PH⊥AQ,
∵PH⊥AQ,
∴∠PHA=∠AOB=90°,
∵∠HAP=∠OAB,
∴△AHP∽△AOB,
∴,
∵PQ=PA,PH⊥AQ,
∴AH=HQ,
∴AH=5-t,
∴,
∴;
③當QP=QA時,
過點Q作QH⊥AP,
∵QH⊥AP,
∴∠QHA=∠AOB=90°,
∵∠QAH=∠BAO,
∴△AQH∽△ABO,
∴,
∵QP=QA,QH⊥AP,
∴AH=PH,
∴AH=,
∴,
∴,
綜上所述當,,時,以點A、P、Q為頂點的三角形是等腰三角形.
科目:初中數學 來源: 題型:
【題目】如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經過橋DC,沿折線A→D→C→B到達,現在新建了橋EF(EF=DC),可直接沿直線AB從A地到達B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.
(1)求橋DC與直線AB的距離;
(2)現在從A地到達B地可比原來少走多少路程?
(以上兩問中的結果均精確到0.1km,參考數據:≈1.14,≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“品中華詩詞,尋文化基因”.某校舉辦了第二屆“中華詩詞大賽”,將該校八年級參加競賽的學生成績統計后,繪制了如下不完整的頻數分布統計表與頻數分布直方圖.
頻數分布統計表
組別 | 成績x(分) | 人數 | 百分比 |
A | 60≤x<70 | 8 | 20% |
B | 70≤x<80 | 16 | m% |
C | 80≤x<90 | a | 30% |
D | 90≤<x≤100 | 4 | 10% |
請觀察圖表,解答下列問題:
(1)表中a= ,m= ;
(2)補全頻數分布直方圖;
(3)D組的4名學生中,有1名男生和3名女生.現從中隨機抽取2名學生參加市級競賽,則抽取的2名學生恰好是一名男生和一名女生的概率為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點P到BE,BD,AC的距離恰好相等,則點P的位置:①在∠B的平分線上;②在∠DAC的平分線上;③在∠ECA的平分線上;④恰是∠B,∠DAC,∠ECA三條角平分線的交點,上述結論中,正確結論的個數有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,某校數學興趣小組為測得大廈AB的高度,在大廈前的平地上選擇一點C,測得大廈頂端A的仰角為30°,再向大廈方向前進80米,到達點D處(C、D、B三點在同一直線上),又測得大廈頂端A的仰角為45°,請你計算該大廈的高度.(精確到0.1米,參考數據: ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖形的折疊即圖形的翻折或者說是對稱變換.這類問題與生活緊密聯系,內容豐富,解法靈活,具有開放性,可以培養(yǎng)我們的動手能力,空間想象能力和幾何變換的思想.在綜合與實踐課上,每個小組剪了一些如圖1所示的直角三角形紙片(,,),并將紙片中的各內角進行折疊操作:
(1)如圖2,“奮斗”小組將紙片中的進行折疊,使直角邊落在斜邊上,點落在點位置,折痕為,則的長為______.
(2)如圖3,“勤奮”小組將中的進行折疊,使點落在直角邊中點上,折痕為,則的長為______.
(3)如圖4,“雄鷹”小組將紙片中的進行折疊,使點落在直角邊延長線上的點處,折痕為,求出的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.
(1)根據已知條件,用尺規(guī)作圖將圖形補充完整,并保留作圖痕跡。
(2)求證:△ACD≌△AED;
(3)若∠B=30°,CD=1,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線l1:y=2x+3與x軸、y軸的交點分別為A、B兩點,將直線l1向下平移1個長度單位后得到直線l2,直線l2與x軸交于點C,與y軸交于點D,
(1)求△AOB 的面積;
(2)直線l2的表達式;
(3)求△CBD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com