【題目】已知直線l1:y=2x+3與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn),將直線l1向下平移1個(gè)長(zhǎng)度單位后得到直線l2,直線l2與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,
(1)求△AOB 的面積;
(2)直線l2的表達(dá)式;
(3)求△CBD的面積.
【答案】(1);(2)y=2x+2;(3).
【解析】
(1)分別令y=2x+3中x、y=0,求出與之對(duì)應(yīng)的y、x的值,由此即可得出點(diǎn)B、A的坐標(biāo),再根據(jù)三角形的面積公式即可求出△AOB的面積;
(2)根據(jù)直線l1的函數(shù)表達(dá)式結(jié)合“上加下減”的平移規(guī)則即可得出直線l2的函數(shù)表達(dá)式y=2x+2;
(3)分別令(2)中y=2x+2中x、y=0求出與之對(duì)應(yīng)的y、x的值,由此即可得出點(diǎn)D、C的坐標(biāo),從而可求出BD,CO的長(zhǎng),再根據(jù)三角形的面積公式即可求出△CBD的面積.
解:(1)在y=2x+3中,令x=0,得y=3;令y=0,得x=,所以A、B的坐標(biāo)分別為:A(,0),
B(0,3),∴S△ABC=××=.
(2)把l1:y=2x+3向下平移1 個(gè)長(zhǎng)度單位后得l2:y=2x+2.
(3)直線l2:y=2x+2與x軸、y軸的交點(diǎn)C、D的坐標(biāo)分別為C(-1,0)、D(0,2)
∴S△CBD=××=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l的函數(shù)表達(dá)式為y=x+6,且l與x軸、y軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)Q從B點(diǎn)開(kāi)始在線段BA上以每秒2個(gè)單位的速度向點(diǎn)A移動(dòng),同時(shí)動(dòng)點(diǎn)P從A點(diǎn)開(kāi)始在線段AO上以每秒1個(gè)單位的速度向O點(diǎn)移動(dòng),設(shè)點(diǎn)Q、P移動(dòng)時(shí)間為t秒.
(1)求點(diǎn)A、B的坐標(biāo)
(2)當(dāng)以點(diǎn)A、P、Q為頂點(diǎn)的三角形是等腰三角形時(shí),求時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)“求助”沒(méi)有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線MN經(jīng)過(guò)正方形ABCD的頂點(diǎn)D且不與正方形的任何一邊相交,AM⊥MN于M,CN⊥MN于N,BR⊥MN于R。
(1)求證:△ADM≌△DCN
(2)求證:MN=AM+CN
(3)試猜想BR與MN的數(shù)量關(guān)系,并證明你的猜想
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,,平分,以為頂點(diǎn)作,交于點(diǎn),于點(diǎn)E.
(1)求證:;
(2)圖1中,若,求的長(zhǎng);
(3)如圖2,,平分,以為頂點(diǎn)作,交于點(diǎn),于點(diǎn).若,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長(zhǎng)為36 cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B點(diǎn)以每秒1cm的速度移動(dòng);點(diǎn)Q從點(diǎn)B沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng),如果同時(shí)出發(fā),則過(guò)3s時(shí),△BPQ的面積為____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C、A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2﹣4x+2)(x2﹣4x+6)+4進(jìn)行因式分解的過(guò)程
解:設(shè)x2﹣4x=y,
原式=(y+2)(y+6)+4。ǖ谝徊剑
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的 (填序號(hào)).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個(gè)結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫(xiě)出最后的結(jié)果 .
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2﹣2x)(x2﹣2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達(dá)式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com