【題目】如圖,已知點A1,A2,…,An均在直線y=x-1上,點B1,B2,…,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標為an(n為正整數(shù)).若a1=-1,則a2016=______.
【答案】.
【解析】
根據(jù)題中所給已知條件可得A1的坐標為(-1,-2),B1的坐標為(-1,1),A2的坐標為(2,1),B2的坐標為,A3的坐標為,B3的坐標為,A4的坐標為(-1,-2),由此可知,從a1到an是按三個一組,循環(huán)出現(xiàn)的,由此即可求出a2016的值了.
∵在直線y=x-1中,當x=a1=-1時,y=-2,
∴點A1的坐標為(-1,-2),
∵A1B1⊥x軸,點B1在反比例函數(shù)上,
∴可得B1的坐標為(-1,1),
同理可得:A2的坐標為(2,1),B2的坐標為,A3的坐標為,B4的坐標為,A4的坐標為(-1,-2),……,
∴,……,
由此可知,從a1到an,每3個數(shù)組成一個循環(huán),分別是,
∵2016÷3=672,
∴a2016是第672次循環(huán)的第三個數(shù),
∴a2016=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AE=CF,∠A=∠C,那么添加下列一個條件后,仍無法判定△ADF≌△CBE的是( 。
A. ∠D=∠B B. AD=CB C. BE=DF D. ∠AFD=∠CEB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】運用“同一個圖形的面積用不同方式表示”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為等面積法.學有所用:在等腰三角形ABC中,AB=AC,其一腰上的高BD=h,M是底邊BC上的任意一點,M到腰AB的距離ME=h1,M到腰AC的距離MF=h2.
(1)請你結(jié)合圖形1來證明:h1+h2=h;
(2)當點M在BC的延長線上時,h1、h2、h之間又有什么樣的結(jié)論,請你在圖2中畫出圖形;
(3)請利用以上結(jié)論解答下列問題,如圖3,在平面直角坐標系中有兩條直線l1:y=,l2:y=﹣3x+3,若l2上的一點M到l1的距離是1,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,下列各式中:①a>0,②b>0,③c=0,④c=1,⑤a+b+c=0.正確的只有( )
A.①④
B.②③④
C.③④⑤
D.①③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,按如下步驟作圖:
①分別以A,C為圓心,大于的長為半徑畫弧,兩弧交于P,Q兩點;
②作直線PQ,分別交AB,AC于點E,D,連接CE;
③過C作CF∥AB交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,則四邊形AEDF的周長是( 。
A. 24 B. 28 C. 32 D. 36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊甲、乙兩名優(yōu)秀隊員在相同的條件下各射耙次,每次射耙的成績情況如圖所示:
請將表格補充完整:
平均數(shù) | 方差 | 中位數(shù) | 命中環(huán)(含環(huán))以上的環(huán)數(shù) | |
甲 | ||||
乙 |
請從下列四個不同的角度對這次測試結(jié)果進行
①從平均數(shù)和方差向結(jié)合看,________的成績好些;
②從平均數(shù)和中位數(shù)相結(jié)合看,________的成績好些;
③從平均數(shù)和折線統(tǒng)計圖走勢相結(jié)合看,________的成績好些;
④若其他隊選手最好成績在環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com