【題目】如圖,是直角三角形,.
(1)請(qǐng)用尺規(guī)作圖法,作,使它與相切于點(diǎn),與相交于點(diǎn);保留作圖痕跡,不寫作法,請(qǐng)標(biāo)明字母)
(2)在(1)的圖中,若,,求弧的長(zhǎng).(結(jié)果保留)
【答案】(1)見解析;(2)
【解析】
(1)過點(diǎn)O作AB的垂線,垂足為點(diǎn)C,然后以O點(diǎn)為圓心,OC為半徑作圓即可;
(2)先根據(jù)切線的性質(zhì)得∠ACO=90°,則利用互余可計(jì)算出∠COD=90°-∠A=60°,∠BOC=90°-∠COD=30°,再在Rt△BOC中利用∠BOC的余弦可計(jì)算出OC,然后根據(jù)弧長(zhǎng)公式求解.
解:(1)如圖所示,即為所求作;
(2)與相切于點(diǎn),
,
,
∵∠A=30°,∠AOB=90°,
∴∠COD=90°-∠A=60°,∠BOC=90°-∠COD=30°,
∵OB=2,
∴OC=OB×cos30°==,
∴弧CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)在上,以為半徑的經(jīng)過點(diǎn),交于點(diǎn),連接.
(1)求證:為的切線;
(2)延長(zhǎng)到點(diǎn),連接,交于點(diǎn),連接,若,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn)
如圖和均為等邊三角形,點(diǎn)在同一直線上,連接BE.
填空:
的度數(shù)為______;
線段之間的數(shù)量關(guān)系為______.
拓展探究
如圖和均為等腰直角三角形,,點(diǎn)在同一直線上,CM為中DE邊上的高,連接BE,請(qǐng)判斷的度數(shù)及線段之間的數(shù)量關(guān)系,并說明理由.
解決問題
如圖3,在正方形ABCD中,,若點(diǎn)P滿足,且,請(qǐng)直接寫出點(diǎn)A到BP的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的邊在軸上,點(diǎn)坐標(biāo)為,與交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).若將菱形向左平移個(gè)單位,使點(diǎn)落在該反比例函數(shù)圖象上,則的值為( ).
A.1B.2C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】箱子里有4瓶牛奶,其中有一瓶是過期的.現(xiàn)從這4瓶牛奶中不放回地任意抽取2瓶.
(1)請(qǐng)用樹狀圖或列表法把上述所有等可能的結(jié)果表示出來;
(2)求抽出的2瓶牛奶中恰好抽到過期牛奶的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,弦于點(diǎn),過的延長(zhǎng)線上一點(diǎn)作的切線交的延長(zhǎng)線于點(diǎn),切點(diǎn)為點(diǎn),連接交于點(diǎn).
(1)求證:是等腰三角形;
(2)若,求證:;
(3)在(2)的條件下,若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某建設(shè)工程隊(duì)計(jì)劃每小時(shí)挖掘土石方方,現(xiàn)決定租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,已知一臺(tái)甲型挖掘機(jī)與一臺(tái)乙型挖掘機(jī)每小時(shí)共挖土方,臺(tái)甲型挖掘機(jī)與臺(tái)乙型挖掘機(jī)恰好能完成每小時(shí)的挖掘量.
(1)求甲、乙兩種型號(hào)的挖掘機(jī)每小時(shí)各挖土多少方?
(2)若租用一臺(tái)甲型挖掘機(jī)每小時(shí)元,租用一臺(tái)乙型挖掘機(jī)每小時(shí)元,且每小時(shí)支付的總租金不超過元,又恰好完成每小時(shí)的挖掘量,請(qǐng)?jiān)O(shè)計(jì)該工程隊(duì)的租用方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是的弦,是的中點(diǎn),交于點(diǎn)是延長(zhǎng)線一點(diǎn),且
求證: 是的切線:
已知,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com