如圖,在▱ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.
(1)求EG:BG的值;
(2)求證:AG=OG;
(3)設(shè)AG=a,GH=b,HO=c,求a:b:c的值.
解:(1)∵四邊形ABCD是平行四邊形,
∴AO=AC,AD=BC,AD∥BC,
∴△AEG∽△CBG,
∴==.
∵AE=EF=FD,
∴BC=AD=3AE,
∴GC=3AG,GB=3EG,
∴EG:BG=1:3;
(2)∵GC=3AG(已證),
∴AC=4AG,
∴AO=AC=2AG,
∴GO=AO﹣AG=AG;
(3)∵AE=EF=FD,
∴BC=AD=3AE,AF=2AE.
∵AD∥BC,
∴△AFH∽△CBH,
∴===,
∴=,即AH=AC.
∵AC=4AG,
∴a=AG=AC,
b=AH﹣AG=AC﹣AC=AC,
c=AO﹣AH=AC﹣AC=AC,
∴a:b:c=::=5:3:2.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點P在△ABC的邊AC上,要判斷△ABP∽△ACB,添加一個條件,不正確的是( )
A. ∠ABP=∠C B. ∠APB=∠ABC C. = D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
清明期間,某校師生組成200個小組參加“保護(hù)環(huán)境,美化家園”植樹活動.綜合實際情況,校方要求每小組植樹量為2至5棵,活動結(jié)束后,校方隨機(jī)抽查了其中50個小組,根據(jù)他們的植樹量繪制出如圖所示的兩幅不完整統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下面的問題:
(1)請把條形統(tǒng)計圖補(bǔ)充完整,并算出扇形統(tǒng)計圖中,植樹量為“5棵樹”的圓心角是 72 °.
(2)請你幫學(xué)校估算此次活動共種多少棵樹.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四邊形BDEF是△ABC的內(nèi)接正方形(點D、E、F在三角形的邊上).則此正方形的面積是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在水平地面上豎立著一面墻AB,墻外有一盞路燈D.光線DC恰好通過墻的最高點B,且與地面形成37°角.墻在燈光下的影子為線段AC,并測得AC=5.5米.
(1)求墻AB的高度(結(jié)果精確到0.1米);(參考數(shù)據(jù):tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)[來源:%&z~z^s@tep.com]
(2)如果要縮短影子AC的長度,同時不能改變墻的高度和位置,請你寫出兩種不同的方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2 海里的點A處.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長是( )
(A)2 海里 (B)海里
(C)海里 (D)海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年陜西省西安市八年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,折疊矩形紙片ABCD,先折出折痕(對角線)BD,再折疊AD邊與對角線BD重合,得折痕DG,如圖所示,若AB=8,BC=6,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省東臺第一教研片七年級下學(xué)期第一次月考數(shù)學(xué)卷(解析版) 題型:填空題
計算= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com