【題目】某公司共有A,B,C三個部門,根據(jù)每個部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計表和扇形圖
各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計表

部門

員工人數(shù)

每人所創(chuàng)的年利潤/萬元

A

5

10

B

b

8

C

c

5


(1)①在扇形圖中,C部門所對應(yīng)的圓心角的度數(shù)為
②在統(tǒng)計表中,b= , c=
(2)求這個公司平均每人所創(chuàng)年利潤.

【答案】
(1)108°,9,6
(2)解:這個公司平均每人所創(chuàng)年利潤為: =7.6(萬元).

【解析】(1)①在扇形圖中,C部門所對應(yīng)的圓心角的度數(shù)為:360°×30%=108°;

②A部門的員工人數(shù)所占的百分比為:1﹣30%﹣45%=25%,

各部門的員工總?cè)藬?shù)為:5÷25%=20(人),

∴b=20×45%=9,c=20×30%=6,

所以答案是:108°,9,6;

【考點(diǎn)精析】利用扇形統(tǒng)計圖對題目進(jìn)行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,過O點(diǎn)作OP⊥AB,交弦AC于點(diǎn)D,交⊙O于點(diǎn)E,且使∠PCA=∠ABC.

(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AMBN,點(diǎn)E,FD在射線AM上,點(diǎn)C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.

(1)求證:ABCD.

(2)如果平行移動CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個角的比值.

(3)如果∠A100°,那么在平行移動CD的過程中,是否存在某一時刻,使∠AEB=∠BDC?若存在,求出此時∠AEB的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個三角形的三邊長分別為5、7、8,則其內(nèi)切圓的半徑為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(4,0),且當(dāng)x=﹣2和x=5時二次函數(shù)的函數(shù)值y相等.

(1)求實(shí)數(shù)a、b的值;
(2)如圖1,動點(diǎn)E,F(xiàn)同時從A點(diǎn)出發(fā),其中點(diǎn)E以每秒2個單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動,點(diǎn)F以每秒 個單位長度的速度沿射線AC方向運(yùn)動.當(dāng)點(diǎn)E停止運(yùn)動時,點(diǎn)F隨之停止運(yùn)動.設(shè)運(yùn)動時間為t秒.連接EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.
①是否存在某一時刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由.
②設(shè)△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線m與直線n垂直相交于O,點(diǎn)A在直線m上運(yùn)動,點(diǎn)B 在直線n上運(yùn)動,AC、BC分別是∠BAO和∠ABO的角平分線.

1)求∠ACB的大;

2)如圖2,若BDAOB的外角∠OBE的角平分線,BDAC相交于點(diǎn)D,點(diǎn)A、B在運(yùn)動的過程中,∠ADB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;

3)如圖3,過C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CFOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角板的直角頂點(diǎn)C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.

(1)①若∠DCB=45°,則∠ACB的度數(shù)為   

若∠ACB=140°,則∠DCE的度數(shù)為   

(2)(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

(3)當(dāng)∠ACE<90°且點(diǎn)E在直線AC的上方時,當(dāng)這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣1,1)、B(4,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點(diǎn)F的坐標(biāo)為(0,m)(m>2),直線AF交拋物線于另一點(diǎn)G,過點(diǎn)G作x軸的垂線,垂足為H.設(shè)拋物線與x軸的正半軸交于點(diǎn)E,連接FH、AE,求證:FH∥AE;

(3)如圖2,直線AB分別交x軸、y軸于C、D兩點(diǎn).點(diǎn)P從點(diǎn)C出發(fā),沿射線CD方向勻速運(yùn)動,速度為每秒
個單位長度;同時點(diǎn)Q從原點(diǎn)O出發(fā),沿x軸正方向勻速運(yùn)動,速度為每秒1個單位長度.點(diǎn)M是直線PQ與拋物線的一個交點(diǎn),當(dāng)運(yùn)動到t秒時,QM=2PM,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一列數(shù)-12,-12,2,-1,22,2,-1其中相鄰的兩個-12隔開,第n-1之問有n2,則第21個數(shù)是______,這一列數(shù)的前2019個數(shù)的和為______

查看答案和解析>>

同步練習(xí)冊答案