【題目】如圖,點E為矩形ABCD的邊BC長上的一點,作DFAE于點F,且滿足DF=AB.下面結(jié)論:①DEF≌△DEC;②SABE = SADF;③AF=AB;④BE=AF.其中正確的結(jié)論是(

A.1B.2C.3D.4

【答案】C

【解析】

證明RtDEFRtDEC得出①正確;在證明△ABE≌△DFA得出SABESADF;②正確;得出BEAF,④正確,③不正確;即可得出結(jié)論.

解:∵四邊形ABCD是矩形,

∴∠C=∠ABE90°,ADBC,ABCD,

DFAB

DFCD,

DFAE

∴∠DFA=∠DFE90°,

RtDEFRtDEC中,,

RtDEFRtDECHL),①正確;

ADBC

∴∠AEB=∠DAF,

在△ABE和△DFA中,,

∴△ABE≌△DFAAAS),

SABESADF;②正確;

BEAF,④正確,③不正確;

正確的結(jié)論有3個,

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為大半圓的直徑,小半圓的圓心O1在線段CD上,大半圓O的弦AB與小半圓O1交于E、F,AB=6cm,EF=2cm,且AB∥CD。則陰影部分的面積為__________cm2(結(jié)果保留準確數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B都在反比例函數(shù)y=x0)的圖像上,過點BBCx軸交y軸于點C,連接AC并延長交x軸于點D,連接BD,DA3DC,SABD6.則k的值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別為-3,0,1,點P為數(shù)軸上任意一點,其對應的數(shù)為x

(1)如果點P到點M,點N的距離相等,那么x的值是______;

(2)數(shù)軸上是否存在點P,使點P到點M,點N的距離之和是5?若存在,請直接寫出x的值;若不存在,請說明理由.

(3)如果點P以每分鐘3個單位長度的速度從點O向左運動時,點M和點N分別以每分鐘1個單位長度和每分鐘4個單位長度的速度也向左運動,且三點同時出發(fā),那么幾分鐘時點P到點M,點N的距離相等.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知m,n是實數(shù),定義運算“*”為:m*nmn+n

1)分別求4*(﹣2)與4*的值;

2)若關(guān)于x的方程x*a*x)=﹣有兩個相等的實數(shù)根,求實數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,AEBCCB延長線于E,CFAEAD延長線于點F

1)求證:四邊形AECF是矩形;

2)連接OE,若AE=4AD=5,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富校園文化,促進學生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學開展“書法、武術(shù)、黃梅戲進校園”活動。今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題.

(1)求該校參加本次“黃梅戲”演唱比賽的學生人數(shù);

(2)求扇形統(tǒng)計圖B等級所對應扇形的圓心角度數(shù);

(3)已知A等級的4名學生中有1名男生,3名女生,現(xiàn)從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=3BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點EF,則線段B′F的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,于點,于點,平分于點,點為線段延長線上一點,.則下列結(jié)論:①;②;③;④若,則,正確的有:________.(只填序號)

查看答案和解析>>

同步練習冊答案