【題目】定義:在平面直角坐標系中,對于任意兩點, ,當點滿足, 時,則稱點為點,的“四合點”.例如:,當點滿足,則點為點,的“四合點”.
若點,則點的“四合點” 的坐標為
如圖,點,點是直線上一點,點為點的“四合點”,
①請求出關于的函數關系式;
②已知點,在直線上是否存在點,使得與相似,若存在,請求出此時點 的坐標;若不存在,請說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=﹣x+m(m為常數)的圖象與x軸交于A(﹣3,0),與y軸交于點C.以直線x=﹣1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數,且a>0)經過A,C兩點,與x軸正半軸交于點B.
(1)求一次函數及拋物線的函數表達式;
(2)P為線段AC上的一個動點(點P與C、A不重合)過P作x軸的垂線與這個二次函數的圖象交于點D,連接CD,AD,點P的橫坐標為n,當n為多少時,△CDA的面積最大,最大面積為多少?
(3)在對稱軸上是否存在一點E,使∠ACB=∠AEB?若存在,求點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,,點是內一個動點,且滿足,當線段取最小值時,記,線段上一動點繞著點順時針旋轉得到點,且滿足 ,則的最小值為 _____________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橫、縱坐標都是整數的點叫做整點.直線y=ax與拋物線y=ax2﹣2ax﹣1(a≠0)圍成的封閉區(qū)域(不包含邊界)為W.
(1)求拋物線頂點坐標(用含a的式子表示);
(2)當a=時,寫出區(qū)域W內的所有整點坐標;
(3)若區(qū)域W內有3個整點,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.
(1)在圖1中畫出等腰直角三角形MON,使點N在格點上,且∠MON=90°;
(2)在圖2中以格點為頂點畫一個正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點為頂點的四個全等的直角三角形和一個正方形,且正方形ABCD面積沒有剩余(畫出一種即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以Rt△ABC各邊為邊分別向外作等邊三角形,編號為①、②、③,將②、①如圖所示依次疊在③上,已知四邊形EMNC與四邊形MPQN的面積分別為9與7,則斜邊BC的長為( 。
A.5B.9C.10D.16
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com