【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是(

A.a>0
B.當x≥1時,y隨x的增大而增大
C.c<0
D.當﹣1<x<3時,y>0

【答案】D
【解析】解:A、拋物線的開口方向向下,則a<0.故A選項錯誤;
B、根據(jù)圖示知,當x≥1時,y隨x的增大而減小.故此選項錯誤;
C、根據(jù)圖示知,該拋物線與y軸交與正半軸,則c>0.故C選項錯誤;
D、根據(jù)圖示知,拋物線的對稱軸為x=1,拋物線與x軸的一交點的橫坐標是﹣1,則拋物線與x軸的另一交點的橫坐標是3,
所以當﹣1<x<3時,y>0.故此選項正確;
故選:D.
【考點精析】認真審題,首先需要了解二次函數(shù)圖象以及系數(shù)a、b、c的關系(二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對角線BD上一點,且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、AC于點E、G.連接GF.下列結論:①∠AGD=112.5°;AD:AE=2;SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2 OG。其中正確結論的序號是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,O為坐標原點,二次函數(shù)y=x2+mx+2的圖象與x軸的正半軸交于點A,與y軸的正半軸交交于點B,且OA:OB=1:2.設此二次函數(shù)圖象的頂點為D.

(1)求這個二次函數(shù)的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經過點C.請直接寫出點C的坐標和平移后所得圖象的函數(shù)解析式;
(3)設(2)中平移后所得二次函數(shù)圖象與y軸的交點為B1 , 頂點為D1 . 點P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在同心圓中,大圓的弦AB交小圓于C,D兩點.

(1)求證:∠AOC=∠BOD;
(2)試確定AC與BD兩線段之間的大小關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無論m取何值時,方程恒有實數(shù)根;
(2)若關于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將數(shù)軸按如圖所示從點A開始折出一等邊△ABC,設A表示的數(shù)為x-3, B表示的數(shù)為2x5,C表示的數(shù)為5x,則x=_______△ABC向右滾動,則點2016與點_____重合.(填A.B.C)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方程:①3x﹣1=2x+1, ,x﹣1=x中,解為x=2的是方程( 。

A. 、②和③ B. ③和④ C. 、③和④ D. ②和④

查看答案和解析>>

同步練習冊答案