【題目】已知:△ABC中,AE平分∠BAC。
(1)如圖①AD⊥BC于D,若∠C =70°,∠B =30°,求∠DAE的度數(shù)
(2)如圖②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一點(diǎn),過(guò)F作FG⊥BC于G,且∠B=40°,∠C=80°,求∠EFG的度數(shù);
(3)在(2)的條件下,若F點(diǎn)在AE的延長(zhǎng)線上(如圖③),其他條件不變,則∠EFG的角度大小發(fā)生改變嗎?說(shuō)明理由.
【答案】(1)20°;(2)20°;(3)∠EFG的度數(shù)大小不發(fā)生改變.
【解析】試題分析:(1)由三角形內(nèi)角和定理可求得∠BAC的度數(shù),在Rt△ADC中,可求得∠DAC的度數(shù),AE是角平分線,有∠EAC=∠BAC,故∠EAD=∠EAC-∠DAC;
(2)推出AD∥FG,根據(jù)平行線性質(zhì)得出∠EFG=∠DAE,代入即可.
(3)推出AD∥FG,根據(jù)平行線性質(zhì)得出∠EFG=∠DAE,代入即可.
試題解析:(1)∵在△ABC中,AE是∠BAC的平分線,且∠B=30°,∠C=70°,
∴∠BAE=∠EAC=(180°-∠B-∠C)=(180°-30°-70°)=40°.
在△ACD中,∠ADC=90°,∠C=70°,
∴∠DAC=90°-70°=20°,
∠DAE=∠EAC-∠DAC=40°-20°=20°.
(2)∵∠B=40°,∠C=80°,
∴∠DAE=×80°-×40°=20°,
∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°;
(3)∠EFG的度數(shù)大小不發(fā)生改變,
理由是:∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)的南海資源豐富,其面積為3500000平方千米,相當(dāng)于渤海、黃海和東海總面積的3倍.其中3500000用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“你記得父母的生日嗎?”這是我校在九年級(jí)學(xué)生中開(kāi)展主題為“感恩”教育時(shí)設(shè)置的一個(gè)問(wèn)題,有以下四個(gè)選項(xiàng):A.父母生日都記得;B.只記得母親生日;C.只記得父親生日;D.父母生日都不記得.在隨機(jī)調(diào)查了(1)班和(2)班各50名學(xué)生后,根據(jù)相關(guān)數(shù)據(jù)繪出如圖所示的統(tǒng)計(jì)圖.
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)據(jù)此推算,九年級(jí)共900名學(xué)生中,“父母生日都不記得”的學(xué)生共多少名?
(3)若兩個(gè)班中“只記得母親生日”的學(xué)生占22%,則(2)班“只記得母親生日”的學(xué)生所占百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( 。
A.a3b3=(ab)3
B.a2a3=a6
C.a6÷a3=a2
D.(a2)3=a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( )
A.1,2,3B.1,7,6C.2,3,6 D.6,8,10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線和直線都經(jīng)過(guò)A(1,0),B(﹣2,3)兩點(diǎn).
(1)求拋物線y1及直線y2的解析式;
(2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),在直線AB的下方,當(dāng)△PAB的面積最大時(shí),請(qǐng)求出P點(diǎn)坐標(biāo);
(3)拋物線上是否存在一點(diǎn)M,使△MAB與△OAB的面積相等?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+b交坐標(biāo)軸于A(-8,0),B(0,13)兩點(diǎn),則不等式kx+b≥0的解集為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC與△A'B'C'是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)畫(huà)出位似中心點(diǎn)O;
(2)直接寫(xiě)出△ABC與△A′B'C'的位似比;
(3)以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫(huà)出△A'B'C'關(guān)于點(diǎn) O中心對(duì)稱的△A″B″C″,并直接寫(xiě)出△A″B″C″各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com