【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CD翻折,使點(diǎn)A落在AB上的點(diǎn)E處;再將邊BC沿CF翻折,使點(diǎn)B落在CE的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)D、F,則線段B′F的長(zhǎng)為( )
A. B. C. D.
【答案】B
【解析】首先根據(jù)折疊可得CD=AC=3,BC=4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,然后求得△BCF是等腰直角三角形,進(jìn)而求得∠B/GD=90°,CE-EF=,ED=AE=,
從而求得B/D=1,DF=,在Rt△B/DF中,由勾股定理即可求得B/F的長(zhǎng).
解:根據(jù)首先根據(jù)折疊可得CD=AC=3,B/C=B4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,
∴BD=4-3=1,∠DCE+∠B/CF=∠ACE+∠BCF,
∴∠ACB=90°,∴∠ECF=45°,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∴∠BFC=∠B/FC=135°,
∴∠B/FD=90°,
∵S△ABC=AC×BC=AB×CE,
∴AC×BC=AB×CE,
∵根據(jù)勾股定理求得AB=5,
∴CE=,∴EF=,ED=AE==
∴DE=EF-ED=,
∴B/F==.
故答案為:
“點(diǎn)睛”此題主要考查了翻折變換,等腰三角形的判定和性質(zhì),勾股定理的應(yīng)用等,根據(jù)折疊的性質(zhì)求得相等的角是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)數(shù)軸上點(diǎn)B表示的數(shù)是 ;點(diǎn)P表示的數(shù)是 (用含t的代數(shù)式表示)
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?
(3)若M為AP的中點(diǎn),N為BP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由,若不變,請(qǐng)你畫(huà)出圖形,并求出線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植物的主干長(zhǎng)出若干數(shù)目的支干,每個(gè)支干又長(zhǎng)出相同數(shù)目的小分支,若小分支、支干和主干的總數(shù)目是73,則每個(gè)支干長(zhǎng)出的小分支的數(shù)目為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)兩條直線相交于一點(diǎn)有2組不同的對(duì)頂角;
(2)三條直線相交于一點(diǎn)有6組不同的對(duì)頂角;
(3)四條直線相交于一點(diǎn)有12組不同的對(duì)頂角;
(4)n條直線相交于同一點(diǎn)有___________組不同對(duì)頂角.(如圖所示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若三角形三邊長(zhǎng)為整數(shù),周長(zhǎng)為11,且有一邊長(zhǎng)為4,則此三角形中最長(zhǎng)的邊是( 。
A.7
B.6
C.5
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,完成下列推理過(guò)程.
已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO.
證明:CF∥DO.
證明:∵DE⊥AO,BO⊥AO(已知)
∴∠DEA=∠BOA=90°( )
∴DE∥BO( )
∴∠EDO=∠DOF( )
又∵∠CFB=∠EDO( ④ )
∴∠DOF=∠CFB( ⑤ )
∴CF∥DO( ⑥ )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com