【題目】如圖,拋物線yax2bxc(a≠0)x軸交于點A(2,0),B(1,0),直線x=-0.5與此拋物線交于點C,與x軸交于點M,在直線上取點D,使MDMC,連接AC,BCAD,BD,某同學(xué)根據(jù)圖象寫出下列結(jié)論:①ab0;②當(dāng)-2<x<1時,y>0;③四邊形ACBD是菱形;④9a3bc>0,你認為其中正確的是( )

A. ②③④B. ①②④C. ①③④D. ①②③

【答案】D

【解析】

①∵拋物線y=ax2+bx+c(a≠0)x軸交于點A(2,0)、B(1,0),

∴該拋物線的對稱軸為x==0.5,

a=b,ab=0,①正確;

②∵拋物線開口向下,且拋物線與x軸交于點A(2,0)、B(1,0),

∴當(dāng)2<x<1時,y>0,②正確;

③∵點A、B關(guān)于x=0.5對稱,

AM=BM,

又∵MC=MD,且CDAB,

∴四邊形ACBD是菱形,③正確;

④當(dāng)x=3時,y<0,

y=9a3b+c<0,④錯誤。

綜上可知:正確的結(jié)論為①②③。

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生的學(xué)業(yè)負擔(dān)過重會嚴重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD為矩形,,,點ECD的中點,點PAB上以每秒2個單位的速度由AB運動,設(shè)運動時間為t秒.

1)當(dāng)點P在線段AB上運動了t秒時,__________________(用代數(shù)式表示);

2t為何值時,四邊形PDEB是平行四邊形:

3)在直線AB上是否存在點Q,使以D、E、Q、P四點為頂點的四邊形是菱形?若存在,求出t的值:若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD BC于點 D,過點 D DEAD AB 于點 E,以 AE 為直徑作⊙O

(1)求證:BC 是⊙O 的切線;

(2)若 AC=3,BC=4,求 BE 的長.

(3)在(2)的條件中,求 cosEAD 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yax22ax1(a是常數(shù),a≠0),下列結(jié)論正確的是( )

A. 當(dāng)a1,函數(shù)圖象過點(1,1)

B. 當(dāng)a=-2,函數(shù)圖象與x軸沒有交點

C. a>0,則當(dāng)x≥1,yx的增大而減小

D. a<0,則當(dāng)x≤1,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD為矩形,,,點ECD的中點,點PAB上以每秒2個單位的速度由AB運動,設(shè)運動時間為t秒.

1)當(dāng)點P在線段AB上運動了t秒時,__________________(用代數(shù)式表示);

2t為何值時,四邊形PDEB是平行四邊形:

3)在直線AB上是否存在點Q,使以DE、Q、P四點為頂點的四邊形是菱形?若存在,求出t的值:若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程

1)求證:方程有兩個不相等的實數(shù)根;

2)若△ABC的兩邊AB、AC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當(dāng)△ABC是等腰三角形時,求k的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1 將一副三角板中的兩塊直角三角尺的直角頂點O按如圖方式疊放在一起, AOB=DOC=90°.

①如圖(1),若OD是∠AOB的平分線時,求∠BOD和∠AOC的度數(shù).

②如圖(2),若OD不是∠AOB的平分線,試猜想∠AOC與∠BOD的數(shù)量關(guān)系,并說明理由.

2)如圖(3),如果兩個角∠AOB = DOC= m°(0< m <90),直接寫出∠AOC與∠BOD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個形狀、大小完全相同的含有、的直角三角板如圖①放置,、與直線重合,且三角板、三角板均可繞點逆時針旋轉(zhuǎn).

圖① 圖②

1)直接寫出的度數(shù)是______.

2)如圖②,在圖①基礎(chǔ)上,若三角板的邊處開始繞點逆時針旋轉(zhuǎn),轉(zhuǎn)速為4.5/秒,同時三角板的邊處開始繞點逆時針旋轉(zhuǎn),轉(zhuǎn)速為0.5/秒,(當(dāng)轉(zhuǎn)到與重合時,兩三角板都停止轉(zhuǎn)動),在旋轉(zhuǎn)過程中,當(dāng)重合時,求旋轉(zhuǎn)的時間是多少?

3)在(2)的條件下,、、三條射線中,當(dāng)其中一條射線平分另兩條射線的夾角時,請求出旋轉(zhuǎn)的時間.

查看答案和解析>>

同步練習(xí)冊答案