【題目】已知數(shù)軸上的兩點A、B所表示的數(shù)分別是a和b,O為數(shù)軸上的原點,如果有理數(shù)a,b滿足
(1)求a和b的值;
(2)若點P是一個動點,以每秒5個單位長度的速度從點A出發(fā),沿數(shù)軸向右運動,請問經(jīng)過多長時間,點P恰巧到達線段AB的三等分點?
(3)若點C是線段AB的中點,點M以每秒3個單位長度的速度從點C開始向右運動,同時點P以每秒5個單位長度的速度從點A出發(fā)向右運動,點N以每秒4個單位長度的速度從點B開始向左運動,點P與點M之間的距離表示為PM,點P與點N之間的距離表示為PN,是否存在某一時刻使得PM+PN=12?若存在,請求出此時點P表示的數(shù);若不存在,請說明理由.
【答案】(1)a=-8,b=22;(2)t=2或t=4;(3) 7或.
【解析】
(1)根據(jù)絕對值以及偶次方的非負性得出a,b的值;
(2)根據(jù)點P運動的速度、結合AP:BP=1:2或AP:BP=2:1找出點P的運動時間,設點Q的運動速度為x單位長度/秒,根據(jù)路程=速度×時間,即可得出關于x的一元一次方程,解之即可得出結論;
(3)分三種情況:①0<x≤;②<x≤;③<x時. 結合兩點間的距離公式列出相應的方程進行解答即可.
解:(1)a=-8,b=22;
(2)5t=10時,t=2;5t=20時,t=4;
(3) 存在
理由:設運動的時間為x秒,
點C對應的數(shù)為7,
點P對應的數(shù)為8+5x,
點M對應的數(shù)為 7+3x,
點N對應的數(shù)為 224x,
則PM=|(8+5x)(7+3x)|=|15+2x|,PN=|(8+5x)(224x)|=|30+9x|.
由PM+PN=12得|15+2x|+|30+9x|=12.
①當0<x≤時,152x+309x=12,解得:x=3,
此時P對應的數(shù)為-8+5x=7;
②當<x≤時,152x-30+9x=12,解得:x=且<≤,
此時P對應的數(shù)為-8+5x=;
③當<x時,-15+2x-30+9x=12,解得:x=且<,舍去;
綜上可知,當運動的時間為3秒或秒時,會使得PM+PN=12,
此時點P對應的數(shù)為 7或.
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y= -+1與x軸、y軸分別交于點A、點B(O為坐標原點),將△ABO繞著點B逆時針旋轉60°后,點A恰好落在點C處,那么點C的坐標為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點A、B、O為旋轉中心順時針旋轉,分別得到圖②、圖③、…,則旋轉得到的圖⑧的直角頂點的坐標為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知兩條射線OM∥CN,動線段AB的兩個端點A,B分別在射線OM,CN上,且∠C=∠OAB=108°,點E在線段CB上,OB平分∠AOE.
(1)圖中有哪些與∠AOC相等的角?并說明理由;
(2)若平移AB,那么∠OBC與∠OEC的度數(shù)比是否隨著AB位置變化而變化?若變化,找出變化規(guī)律;若不變,求出這個比值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠BDC,∠2+∠3=180°.
(1) 請你判斷DA與CE的位置關系,并說明理由;
(2) 若DA平分∠BDC,CE⊥AE于點E,∠1=70°,試求∠FAB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,G是線段AB上一點,AC和DG相交于點E.
(1)請先作出∠ABC的平分線BF,交AC于點F;(尺規(guī)作圖,保留作圖痕跡,不寫作法與證明)
(2)然后證明當:AD∥BC,AD=BC,∠ABC=2∠ADG時,DE=BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個互相重合的直角三角形,將其中的一個三角形沿點到的方向平移到的位置,若,,且平移的距離為6,則陰影部分面積是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)已知代數(shù)式(ax-3)(2x+4)-x2-b化簡后,不含x2項和常數(shù)項.
(1)求a,b的值;
(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com