【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE交CD于點O,連接DE,有下列結(jié)論:①DE=BC;②△BOC∽△COE;③BO=2EO;④AO的延長線經(jīng)過BC的中點.其中正確的是____.(填寫所有正確結(jié)論的編號)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x﹣2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A(1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x﹣2)2+m的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,點E,F分別在邊AB,CD上,AD∥EF∥BC,EF與BD交于點G,AD=5,BC=10,=.
(1)求EF的長;
(2)設(shè)=,=,那么= ,= .(用向量、表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,以點A為圓心AB長為半徑作弧交AD于點F,分別以點B、F為圓心,同樣長度m為半徑作弧,交于點G,連結(jié)AG并延長交BC于點E,若BF=6,AB=4,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為 °;
(2)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于點A和點B(3,0),與軸交于點C(0,3),P是線段BC上一點,過點P作PN∥軸交軸于點N,交拋物線于點M.
(1)求該拋物線的表達式;
(2)如果點P的橫坐標(biāo)為2,點Q是第一象限拋物線上的一點,且△QMC和△PMC的面積相等,求點Q的坐標(biāo);
(3)如果,求tan∠CMN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:將函數(shù)l的圖象繞點P(m,0)旋轉(zhuǎn)180°,得到新的函數(shù)l'的圖象,我們稱函數(shù)l'是函數(shù)關(guān)于點P的相關(guān)函數(shù).
例如:當(dāng)m=1時,函數(shù)y=(x+1)2+5關(guān)于點P(1,0)的相關(guān)函數(shù)為y=﹣(x﹣3)2﹣5.
(1)當(dāng)m=0時
①一次函數(shù)y=x﹣1關(guān)于點P的相關(guān)函數(shù)為 ;
②點(,﹣)在二次函數(shù)y=﹣ax2﹣ax+1(a≠0)關(guān)于點P的相關(guān)函數(shù)的圖象上,求a的值.
(2)函數(shù)y=(x﹣1)2+2關(guān)于點P的相關(guān)函數(shù)y=﹣(x+3)2﹣2,則m= ;
(3)當(dāng)m﹣1≤x≤m+2時,函數(shù)y=x2﹣mx﹣m2關(guān)于點P(m,0)的相關(guān)函數(shù)的最大值為6,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC為格點三角形(頂點在網(wǎng)格線的交點).
(1)將△ABC向上平移2個單位得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞著某點O逆時針方向旋轉(zhuǎn)90°后,得到△A2B2C2,請畫出旋轉(zhuǎn)中心O,并直接寫出在此旋轉(zhuǎn)過程中,線段AB掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果
下面有三個推斷:
①當(dāng)拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;
③若再次用計算機模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com