精英家教網 > 初中數學 > 題目詳情
如圖,直線y=x與雙曲線y=(x>0)交于點A.將直線y=x向右平移個單位后,與雙曲線y=(x>0)交于點B,與x軸交于點C,若,則k=   
【答案】分析:欲求k,可由平移的坐標特點,求出雙曲線上點的坐標,再代入雙曲線函數式求解.
解答:解:設點A的坐標為(a,a),
=2,
取OA的中點D,
∴點B相當于點D向右平移了個單位,
∵點D的坐標為(a,a),
∴B點坐標為(+a,a),
∵點A,B都在反比例函數y=的圖象上,
∴a×a=a×(+a),
解得a=3或0(0不合題意,舍去)
∴點A的坐標為(3,4),
∴k=12.
點評:本題結合圖形的平移考查反比例函數的性質及相似形的有關知識.平移的基本性質是:①平移不改變圖形的形狀和大;②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.本題關鍵是利用了對應線段平行且相等的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,帆船A和帆船B在太湖湖面上訓練,O為湖面上的一個定點,教練船靜候于點O,訓練時要求A、B兩船始終關于O點對稱.以O為原點,建立如圖所示的坐標系,x軸、y軸的正方向分別表示正東、正北方向.設A、B兩船可近似看成在雙曲線y=
4x
上運動,湖面風平浪靜,雙帆遠影優(yōu)美,訓練中檔教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).
(1)發(fā)現C船時,A、B、C三船所在位置的坐標分別為A(
 
 
)、B(
 
,
 
)和C(
 
,
 
);
(2)發(fā)現C船,三船立即停止訓練,并分別從A、O、B三點出發(fā)沿最短路線同時前往救援,設A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,經過點A,C,B的拋物線的一部分與經過點A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中精英家教網點,且P(-1,0),C(
2
-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經過點A,E,B的拋物線的解析式;
(2)若點F在“雙拋物線”上,且S△FAP=S△CAP,請你直接寫出點F的坐標;
(3)如果一條直線與“雙拋物線”只有一個交點,那么這條直線叫做“雙拋物線”的切線.若過點E與x軸平行的直線與“雙拋物線”交于點G,求經過點G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

九(1)班數學課題學習小組,為了研究學習二次函數問題,他們經歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源:湖南省中考真題 題型:解答題

九(1)班數學課題學習小組,為了研究學習二次函數問題,他們經歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式;
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸上,設矩形ABCD的周長為l求l的最大值;
II.如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q,問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,帆船A和帆船B在太湖湖面上訓練,O為湖面上的一個定點,教練船靜候于O點,訓練時要求A、B兩船始終關于O點對稱.以O為原點,建立如圖所示的坐標系,x軸、y軸的正方向分別表示正東、正北方向.設A、B兩船可近似看成在雙曲線y=上運動,湖面風平浪靜,雙帆遠影優(yōu)美,訓練中當教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).

1.發(fā)現C船時,A、B、C三船所在位置的坐標分別為A(_______,_______)、B(_______,_______)和C(_______,_______);

2.發(fā)現C船,三船立即停止訓練,并分別從A、O、B三點出發(fā)沿最短路線同時前往救援,設A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由

 

查看答案和解析>>

同步練習冊答案