【題目】《中學生體質健康標準》規(guī)定學生體質健康等級標準:90分及以上為優(yōu)秀;80分~89分為良好;60分~79分為及格;60分以下為不及格.某校為了解學生的體質健康情況,從八年級學生中隨機抽取了10%的學生進行了體質測試,并將測試數(shù)據(jù)制成如下統(tǒng)計圖.請根據(jù)相關信息解答下面的問題:

(1)扇形統(tǒng)計圖中,優(yōu)秀等級所在扇形圓心角的度數(shù)是多少?

(2)求參加本次測試學生的平均成績;

(3)若參加本次測試良好良好以上等級的學生共有35人,請你估計全校八年級不及格等級的學生大約有多少人.

【答案】172°;(282.7分;(325

【解析】

(1)360°乘以優(yōu)秀所占的百分比即可得出答案;

(2)利用加權平均數(shù)公式計算即可;

(3)根據(jù)良好良好以上等級的學生數(shù)和所占的百分比求出抽取的人數(shù),再求出全校的總人數(shù),然后乘以不及格等級的學生所占的百分比即可得出答案.

解:(1)“優(yōu)秀等級所在扇形圓心角的度數(shù)是360°×(150%25%5%)72°;

(2)參加本次測試學生的平均成績是:94×(150%25%5%)+86×50%+72×25%+40×5%82.7();

(3)根據(jù)題意得:

35÷(150%25%5%+50%)÷10%×5%25(),

答:全校八年級不及格等級的學生大約有25人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知水銀體溫計的讀數(shù)y)與水銀柱的長度xcm)之間是一次函數(shù)關系.現(xiàn)有一支水銀體溫計,其部分刻度線不清晰(如圖),表中記錄的是該體溫計部分清晰刻度線及其對應水銀柱的長度.

水銀柱的長度xcm

4.2

8.2

9.8

體溫計的讀數(shù)y

35.0

40.0

42.0

1)求y關于x的函數(shù)關系式(不需要寫出函數(shù)的定義域)

2)用該體溫計測體溫時,水銀柱的長度為6.6cm,求此時體溫計的讀數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】外線投資是籃球隊常規(guī)訓練的重要項目之一,下列圖表中數(shù)據(jù)是甲乙丙三從每從十次投籃測試的成績,測試規(guī)則為連續(xù)投籃十個球為一次,投進籃筐一個球記為1分.

1)寫出運動員乙測試成績的眾數(shù)和中位數(shù);

2)在他們?nèi)龔闹羞x擇一位投籃成績優(yōu)秀且較為穩(wěn)定的選手作為中鋒,你認為選誰更合適?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程kx26x+30通過配方可以化成(x+a)2b(b0)的形式,則k的值可能是(  )

A.0B.2C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,AB3cm,BC4cm,點EBC上一點,且CE1cm.點P由點C出發(fā),沿CD方向向點D勻速運動,速度為1cm/s;點Q由點A出發(fā),沿AD方向向點D勻速運動,速度為cm/s,點P,Q同時出發(fā),PQBDF,連接PEQB,設運動時間為t(s)(0t3)

(1)t為何值時,PEBD

(2)設△FQD的面積為y(cm2),求yt之間的函數(shù)關系式.

(3)是否存在某一時刻t,使得四邊形BQPE的周長最小.若存在,求出此四邊形BQPE的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.

根據(jù)以上信息,回答下列問題:

1)參與本次問卷調(diào)查的學生共有_____人,其中選擇類的人數(shù)有_____人;

2)在扇形統(tǒng)計圖中,求類對應的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖;

3)若將這四類上學方式視為“綠色出行”,請估計該校選擇“綠色出行”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象過點且與直線相交于、兩點,點軸上,點軸上.

求二次函數(shù)的解析式.

如果是線段上的動點,為坐標原點,試求的面積之間的函數(shù)關系式,并求出自變量的取值范圍.

是否存在這樣的點,使?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于點A2,3),B(﹣3,n)兩點,與x軸交于點C

1)求直線和雙曲線的函數(shù)關系式.

2)若kx+b0,請根據(jù)圖象直接寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案