一個(gè)紙質(zhì)的正方形“仙人掌”,假設(shè)“仙人掌”在不斷地生長,新長的葉子是“缺角的正方形”,這些“正方形”的中心在先前正方形的角上,它們的邊長是先前正方形的一半(如圖).若第1個(gè)正方形的邊長是1,則生長到第4次后,所得圖形的面積是______.
由于第一個(gè)正方形的邊長為1,則第二、第三、第四個(gè)正方形的邊長為
1
2
、
1
4
、
1
8
,
∴第二次新生成圖形的面積為:
1
2
×
1
2
×
3
4
×2=
3
8

第三次新生成圖形的面積為:
1
4
×
1
4
×
3
4
×4=
3
16
,
∵由題可得生長到第4次所得缺角正方形的邊長為:
1
8
,
又∵缺角三角形的中心在先前正方形的角上,
∴它少了
1
4
的面積,即剩
3
4

所以一個(gè)缺角三角形的面積是 (
1
8
)
2
×
3
4
=
3
256
,
總共的面積=
3
256
×8=
3
32
,
則生長到第4次后,所得圖形的面積是=1+
3
8
+
3
16
+
3
32
=1
23
32

故答案為:
109
64
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是10cm,點(diǎn)E,F(xiàn),G,H分別從點(diǎn)A,B,C,D出發(fā),以2cm/s的速度同時(shí)向點(diǎn)B,C,D,A運(yùn)動(dòng).
(1)在運(yùn)動(dòng)的過程中,四邊形EFGH是何種四邊形?并說明理由.
(2)運(yùn)動(dòng)多少秒后,四邊形EFGH的面積是52cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖正方形ABCD,E是BC的中點(diǎn),F(xiàn)在AB上,且BF=
1
4
AB,猜想EF與DE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,有兩個(gè)正方形和一個(gè)等邊三角形,則圖中度數(shù)為30°的角有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

邊長為4的正方形ABCD中,點(diǎn)O是對角線AC的中點(diǎn),P是對角線AC上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥CD于點(diǎn)F,作PE⊥PB交直線CD于點(diǎn)E,設(shè)PA=x,S△PCE=y,
(1)求證:DF=EF;
(2)當(dāng)點(diǎn)P在線段AO上時(shí),求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中,△PEC能否為等腰三角形?如果能夠,請直接寫出PA的長;如果不能,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知邊長為a的正方形ABCD,點(diǎn)E在AB上,點(diǎn)F在BC的延長線上,EF與AC交于點(diǎn)O,且AE=CF.
(1)若a=4,則四邊形EBFD的面積為______;
(2)若AE=
1
3
AB,求四邊形ACFD與四邊形EBFD面積的比;
(3)設(shè)BE=m,用含m的式子表示△AOE與△COF面積的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以正方形ABCD的DC邊為一邊向外作一個(gè)等邊三角形.
①求證:△ABE是等腰三角形;
②求∠BAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,小明要給正方形桌子買一塊正方形的桌布.鋪成圖1時(shí),四周垂下的桌布,其長方形部分的寬均為20cm;鋪成圖2時(shí),四周垂下的部分都是等腰直角三角形,且桌面四個(gè)角的頂點(diǎn)恰好在桌布邊上,則要買桌布的邊長是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為______cm2

查看答案和解析>>

同步練習(xí)冊答案