【題目】特例研究:如圖,等邊的邊長為8,求等邊的高.
經(jīng)驗提升:
如圖,在中,,點P為射線BC上的任一點,過點P作,,垂足分別為D、E,過點C作,垂足為補全圖形,判斷線段PD,PE,CF的數(shù)量關(guān)系,并說明理由.
綜合應(yīng)用:
如圖,在平面直角坐標(biāo)系中有兩條直線:,:,若線段BC上有一點M到的距離是1,請運用中的結(jié)論求出點M的坐標(biāo).
【答案】(1);(2)見解析;(3)坐標(biāo)為.
【解析】
利用等邊三角形的性質(zhì)和勾股定理即可得出結(jié)論;
利用面積法可以證明結(jié)論;
連接AP,同理利用與面積之差等于的面積可以證得結(jié)論;
根據(jù)題意得到,,,,根據(jù)圖的結(jié)論,求得M到AC的距離,即M點的縱坐標(biāo),再代入的解析式可求出M的坐標(biāo).
解:如圖,過點A作于G,
是等邊三角形,
,
在中,,
,
則等邊的高為;
當(dāng)點P在邊BC上時,,
理由如下:如圖,連接AP,
,,,
,,,
,
,
,
;
當(dāng)點P在BC的延長線上時,,
理由如下:如圖,連接AP,
,,,
,,,
,
,
,
;
如圖,由題意可求得,,,
,,,,
過M分別作軸,,垂足分別為P、Q,
上的一點M到的距離是1,
,
由圖的結(jié)論得:,
,
點的縱坐標(biāo)為2,
在直線,
當(dāng)時,,
坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)S△ABC= .
(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1(其中點A、B、C的對稱點分別為點A1、B1、C1).
(3)寫出點A1、B1、C1的坐標(biāo).A1 ,B1 ,C1 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線y=﹣x+4與x軸、y軸分別交于A、B兩點,點C(0,n)是y軸上一點.把坐標(biāo)平面沿直線AC折疊,使點B剛好落在x軸上,則點C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年元旦期間,某超市打出促銷廣告,如下表所示:
一次性所購物品的原價 | 優(yōu)惠辦法 |
不超過200元 | 沒有優(yōu)惠 |
超過200元,但不超過600元 | 全部按九折優(yōu)惠 |
超過600元 | 其中600元仍按九折優(yōu)惠,超過600元部分按8折優(yōu)惠 |
(1)小張一次性購買物品的原價為400元,則實際付款為 元;
(2)小王購物時一次性付款580元,則所購物品的原價是多少元?
(3)小趙和小李分別前往該超市購物,兩人各自所購物品的原價之和為1200元,且小李所購物品的原價高于小趙,兩人實際付款共1074元,則小趙和小李各自所購物品的原價分別是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生開展跳繩比賽活動,每班派5名學(xué)生參加,按團(tuán)體總分多少排列名次,統(tǒng)計發(fā)現(xiàn)成績最好的甲班和乙班總分相等,下表是甲班和乙班學(xué)生的比賽數(shù)據(jù)單位:個
選手 | 1號 | 2號 | 3號 | 4號 | 5號 | 總計 |
甲班 | 100 | 98 | 105 | 94 | 103 | 500 |
乙班 | 99 | 100 | 95 | 109 | 97 | 500 |
此時有學(xué)生建議,可以通過考察數(shù)據(jù)中的其他信息作為參考,請解答下列問題:
求兩班比賽數(shù)據(jù)中的中位數(shù),以及方差;
請根據(jù)以上數(shù)據(jù),說明應(yīng)該定哪一個班為冠軍?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,則下列結(jié)論:
① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正確結(jié)論的個數(shù)是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則AM+BM+CM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,若∠ADP=∠α,∠BCP=∠β,射線OM上有一動點P.
(1)當(dāng)點P在A,B兩點之間運動時,∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由
(2)如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD與∠α、∠β之間的何數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com