【題目】如圖,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O,連接AF、CE.
(1)求證:△AOE≌△COF;
(2)求證:四邊形AFCE為菱形;
(3)求菱形AFCE的周長.
【答案】(1)詳見解析;(2)詳見解析;(3)20cm.
【解析】
(1)求出AO=OC,∠AOE=∠COF,根據(jù)平行的性質(zhì)得出∠EAO=∠FCO,根據(jù)ASA即可得出兩三角形全等;
(2)根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;
(3)設(shè)AF=xcm,則CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,進(jìn)而得到菱形AFCE的周長.
(1)證明:∵EF是AC的垂直平分線,
∴AO=OC,∠AOE=∠COF=90°,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO.
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA);
(2)證明:∵△AOE≌△COF,
∴OE=OF,
∵OA=OC,
∴四邊形AFCE為平行四邊形,
又∵EF⊥AC,
∴平行四邊形AFCE為菱形;
(3)解:設(shè)AF=xcm,則CF=AF=xcm,BF=(8﹣x)cm,
在Rt△ABF中,由勾股定理得:
AB2+BF2=AF2,
即42+(8﹣x)2=x2,
解得x=5.
所以菱形AFCE的周長為5×4=20cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是AB邊的中點,過點D作邊AB的垂線l,E是l上任意一點,且AC=5,BC=8,則△AEC的周長最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標(biāo),并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1)在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:DE=BD+CE;
(2)如圖(2)將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標(biāo);
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com