【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用60天的時間銷售一種成本為10元每件的商品,經(jīng)過統(tǒng)計得到此商品的日銷售量m(件)、銷售單價n(元/件)在第x天(x為正整數(shù))銷售的相關(guān)信息:

mx滿足一次函數(shù)關(guān)系,且第1天的日銷售量為98件,第4天的日銷售量為92件;

nx的函數(shù)關(guān)系式為:n

1)求出第15天的日銷售量;

2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出yx的函數(shù)關(guān)系式,并求出在60天內(nèi)該產(chǎn)品的最大利潤.

3)在該產(chǎn)品的銷售過程中,共有  天銷售利潤不低于2322元.(請直接寫出結(jié)果)

【答案】170;(2;60天內(nèi)該產(chǎn)品的最大利潤為2450元;(314

【解析】

1)利用待定系數(shù)法,求出mx的關(guān)系式,再將x15代入,求出m的值即可;

2)分兩種情況:當1x20時和當20x60時,分別用ymn10)求出yx的關(guān)系,再求出其最大值即可;

3)分兩種情況:當1x20時和當20x60時,分別求出利潤不低于2322元的x的取值范圍,即可得解.

解:(1)設(shè)mx的函數(shù)關(guān)系式為:mkx+b,

x1時,m98;當x4時,m92,

,

解得:,

mx的函數(shù)關(guān)系式為:m=﹣2x+100,

∴當x15時,m=﹣2×15+10070;

2)根據(jù)題意,可知:

1x20時,ymn10)=(﹣2x+100)(x+3010)=﹣2x152+2450

∴當x15時,y有最大值2450,

20x60時,ymn10)=40(﹣2x+100)=﹣80x+4000,

yx的增大而減小,

∴當x20時,y有最大值為:﹣1600+40002400,

綜上所述,60天內(nèi)該產(chǎn)品的最大利潤為2450

答:;60天內(nèi)該產(chǎn)品的最大利潤為2450元;

3)根據(jù)題意,

1x20時,﹣2x152+24502322,

解得:7x23

7x20,其整數(shù)解為7、89、1011、12、13、1415、16、17、1819、20

20x60時,﹣80x+40002322

解得:x,

20x,其整數(shù)解為20

綜上所述,銷售利潤不低于2322元有14天,

故答案為:14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次中學(xué)生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖和圖,請根據(jù)相關(guān)信息,解答下列問題:

)圖1中a的值為 ;

)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)這組初賽成績,由高到低確定9人進入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復(fù)賽.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AC為直徑的O恰為ABC的外接圓,ABC的平分線交O于點D,過點D作DEAC交BC的延長線于點E.

(1)求證:DE是O的切線;

(2)若AB=25,BC=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點上,垂足為,若的面積為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點的直線與反比例函數(shù)k>0)的圖象交于A,B兩點,點A在第一象限點Cx軸正半軸上,連結(jié)AC交反比例函數(shù)圖象于點D.AE為∠BAC的平分線,過點BAE的垂線,垂足為E,連結(jié)DE.若AC=3DC,△ADE的面積為8,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于,兩點,與軸和軸分別交于兩點,軸,軸,垂足分別為點,且交于點.

1)求反比例函數(shù)的表達式及點的坐標;

2)直接寫出反比例函數(shù)圖像位于第一象限且時自變量的取值范圍;

3)求面積的比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1、2、34,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、23(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,點E,F分別在BCAD上,BEDF,連結(jié)AE,CF

1)求證:四邊形AECF是平行四邊形;

2)若四邊形AECF為菱形,∠AFC120°,BECE4,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×qpq是正整數(shù),且pq),在n的所有這種分解中,如果pq兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并規(guī)定:Fn=.例如:12可以分解成1×12,2×63×4,因為1216243,所以3×412的最佳分解,所以F12=.如果一個兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)t吉祥數(shù).根據(jù)以上新定義,下列說法正確的有:(1F48=;(2)如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù),則對任意一個完全平方數(shù)m,總有Fm=1;(31526吉祥數(shù);(4吉祥數(shù)中,Ft)的最大值為 ( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案