【題目】如圖,ABCD中,點E,F分別在BC,AD上,BE=DF,連結AE,CF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF為菱形,∠AFC=120°,BE=CE=4,求ABCD的面積.
【答案】(1)詳見解析;(2)16
【解析】
(1)根據(jù)判定定理找出EC和AF平行且相等即可.
(2)根據(jù)60°可得△ABE,△ABE是等邊三角形,做輔助線ABCD的高,求出高即可得面積.
解:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵BE=DF,
∴EC=AF,
又∵EC∥AF,
∴四邊形AECF是平行四邊形;
(2)∵四邊形AECF為菱形,
∴AE=EC,∠AEC=∠AFC=120°,
∴∠AEB=60°,
∵BE=CE=4,
∴AE=BE=4,
∴△ABE是等邊三角形,
過點A作AG⊥BE于點G,
∴AG=ABsin∠B=2,
∵BC=BE+EC=8,
∴ABCD的面積=BCAG=8×2=16.
科目:初中數(shù)學 來源: 題型:
【題目】某校開展以“防疫有我,愛衛(wèi)同行”為主題的線上活動,舉辦了自制口罩,防疫詩歌,防疫故事,防疫畫報共四個項目的比賽,要求每位學生必須參加且僅參加一項,小麗隨機調查了部分學生的報名情況,并繪制了下列兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:
(1)本次調查的學生總人數(shù)是多少?扇形統(tǒng)計圖中“”部分的圓心角度數(shù)是多少?
(2)請將條形統(tǒng)計圖補充完整;
(3)若全校共有1800名學生,請估計該校報名參加防疫故事和防疫畫報比賽的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用60天的時間銷售一種成本為10元每件的商品,經(jīng)過統(tǒng)計得到此商品的日銷售量m(件)、銷售單價n(元/件)在第x天(x為正整數(shù))銷售的相關信息:
①m與x滿足一次函數(shù)關系,且第1天的日銷售量為98件,第4天的日銷售量為92件;
②n與x的函數(shù)關系式為:n=.
(1)求出第15天的日銷售量;
(2)設銷售該產(chǎn)品每天利潤為y元,請寫出y與x的函數(shù)關系式,并求出在60天內該產(chǎn)品的最大利潤.
(3)在該產(chǎn)品的銷售過程中,共有 天銷售利潤不低于2322元.(請直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結論:①2a>b;②a﹣b+c>0;③a<b;④a>c,其中正確的結論是( 。
A.①③B.②③C.①④D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明對九(1)、九(2)班(人數(shù)都為50人)參加“陽光體育”的情況進行了調查,統(tǒng)計結果如圖所示.下列說法中正確的是( )
A.喜歡乒乓球的人數(shù)(1)班比(2)班多B.喜歡足球的人數(shù)(1)班比(2)班多
C.喜歡羽毛球的人數(shù)(1)班比(2)班多D.喜歡籃球的人數(shù)(2)班比(1)班多
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k≠0)與軸交于點A(-2.0),與反比例函數(shù)y=(m≠0)的圖象交于點B(2,n),連接BO,若S△AOB=4.
(1)求反比例函數(shù)和一次函數(shù)的表達式:
(2)若直線AB與y軸的交點為C.求△OCB的面積
(3)根據(jù)圖象,直接寫出當x>0時,不等式>kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形的邊長為4,頂點在第一象限,點、分別在軸、軸上,拋物線經(jīng)過點D(-1,0).
(1)求點C的坐標;
(2)求拋物線的對稱軸;
(3)若拋物線與正方形的邊恰好有三個公共點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年初,新型冠狀病毒肺炎侵襲湖北,武漢是重災區(qū),某愛心人士兩次購買N95口罩支援武漢,第一次花了500000元,第二次花了770000,購買了同樣的N95口罩,已知第二次購買的口罩的單價是第一次的1.4倍,且比第一次多購進了10000個,求該愛心人士第一次購進口罩的單價.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com