【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=70°,求∠CAD的度數(shù);
(2)若AB=4,AC=3,求DE的長.
【答案】(1)35°;(2).
【解析】試題分析:根據(jù)OD∥BC,∠DOA=∠B=70°,根據(jù)OA=OD可得∠DAO=∠ADO=55°,根據(jù)AB為直徑可求出∠CAD的度數(shù);根據(jù)Rt△ACB得出BC的長度,根據(jù)O為AB的中點,OD∥BC,從而得出OE和OD的長度,根據(jù)DE=OD-OE得出答案.
試題解析:(1)∵OD∥BC,∴∠DOA=∠B=70°. 又∵OA=OD,∴∠DAO=∠ADO=55°.
∵AB是直徑,∴∠ACB=90°,∴∠CAB=20° ∴∠CAD=35°.
(2)在Rt△ACB中,BC=. ∵圓心O是直徑AB的中點,OD∥BC,
∴OE=BC=又OD=AB=2, ∴DE=OD-OE=2-
科目:初中數(shù)學 來源: 題型:
【題目】如圖,“和諧號”高鐵列車的小桌板收起時近似看作與地面垂直,小桌板的支架底端與桌面頂端的距離OA = 75厘米.展開小桌板使桌面保持水平,此時CB⊥AO,∠AOB =∠ACB = 37°,且支架長OB與桌面寬BC的長度之和等于OA的長度.求小桌板桌面的寬度BC.(參考數(shù)據(jù)sin37° ≈ 0.6,cos37°≈ 0.8,tan37° ≈ 0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=k1x+b的圖象與x軸交于點A(-3,0),與y軸交于點B,且與正比例函數(shù)y=kx的圖象交點為C(3,4).
(1)求正比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)若點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,請求出點D的坐標;
(3)在x軸上是否存在一點E使△BCE周長最小,若存在,求出點E的坐標
(4)在x軸上求一點P使△POC為等腰三角形,請直接寫出所有符合條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級(1)班學生在完成課題學習“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學生 人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是 .
(2)老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=3,BC=4,D是AB上一動點(不與A、B重合),DE⊥AC于點E,DF⊥BC于點F,點D由A向B移動時,矩形DECF的周長變化情況是( )
A. 逐漸減小 B. 逐漸增大 C. 先增大后減小 D. 先減小后增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD與角平分線AE相交點F,過點C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度數(shù);
(2)求證:CE=BH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線相交于點O.過點O作EF∥BC.分別交AB和AC于點E、F.
(l)你能發(fā)現(xiàn)哪些結(jié)論,把它們寫出來.并選擇一個加以證明;
(2)若AB=10,AC=8.試求△AFF的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com