【題目】平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①abc<0;②c+2a>0;③9a﹣3b+c=0;④a﹣b≤am2+bm(m為實(shí)數(shù));⑤4ac﹣b2<0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2B. 3C. 4D. 5
【答案】C
【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.
①由拋物線可知:a>0,c<0,
對(duì)稱軸x=<0,
∴b>0,
∴abc<0,故①正確;
②由對(duì)稱軸可知:=-1,
∴b=2a,
∵x=1時(shí),y=a+b+c=0,
∴c+3a=0,
∴c+2a=-3a+2a=-a<0,故②錯(cuò)誤;
③(1,0)關(guān)于x=-1的對(duì)稱點(diǎn)為(-3,0),
∴x=-3時(shí),y=9a-3b+c=0,故③正確;
④當(dāng)x=-1時(shí),y的最小值為a-b+c,
∴x=m時(shí),y=am2+bm+c,
∴am2+bm+c≥a-b+c,
即am2+bm≥a-b,故④正確;
⑤拋物線與x軸有兩個(gè)交點(diǎn),
∴△>0,
即b2-4ac>0,
∴4ac-b2<0,故⑤正確;
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】景觀大道要進(jìn)行綠化改造,已知購(gòu)買A種樹(shù)苗3棵,B種樹(shù)苗4棵,需要370元;購(gòu)買A種樹(shù)苗5棵,B種樹(shù)苗2棵,需要430元
(1)求購(gòu)買A,B兩種樹(shù)苗每棵各需多少元?
(2)現(xiàn)需購(gòu)買這兩種樹(shù)苗共100棵,要求購(gòu)買這兩種樹(shù)苗的資金不超過(guò)5860元,求最多能購(gòu)買多少棵A種樹(shù)苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D是BC邊的中點(diǎn)連接AD,則易證AD=BD=CD,即AD=BC;如圖2,若將題中AB=AC這個(gè)條件刪去,此時(shí)AD仍然等于BC.
理由如下:延長(zhǎng)AD到H,使得AH=2AD,連接CH,先證得△ABD≌△CHD,此時(shí)若能證得△ABC≌△CHA,
即可證得AH=BC,此時(shí)AD=BC,由此可見(jiàn)倍長(zhǎng)過(guò)中點(diǎn)的線段是我們?nèi)切巫C明中常用的方法.
(1)請(qǐng)你先證明△ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;
(2)現(xiàn)將圖1中△ABC折疊(如圖3),點(diǎn)A與點(diǎn)D重合,折痕為EF,此時(shí)不難看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若圖2中△ABC也進(jìn)行這樣的折疊(如圖4),此時(shí)線段BE、CF、EF還有這樣的關(guān)系式嗎?若有,請(qǐng)證明;若沒(méi)有,請(qǐng)舉反例.
(3)在(2)的條件下,將圖3中的△DEF繞著點(diǎn)D旋轉(zhuǎn)(如圖5),射線DE、DF分別交AB、AC于點(diǎn)E、F,此時(shí)(2)中結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.圖4中的△DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形中,是對(duì)角線的中點(diǎn),過(guò)點(diǎn)的直線分別交,的延長(zhǎng)線于,.
(1)求證:;
(2)若,試探究線段與線段之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點(diǎn)O為圓心,OA為半徑的圓交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若cos∠BAD=,BE=12,求OE的長(zhǎng);
(3)求證:BC2=2CDOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(a≠0)與y軸交與點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線的對(duì)稱軸方程為x=1.
(1)求拋物線的解析式;
(2)點(diǎn)M從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)N從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;
(3)在點(diǎn)M運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組;請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得____________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(Ⅳ)原不等式組的解集為_(kāi)______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,2)和點(diǎn)B(﹣3,﹣2)的位置如圖所示.
(1)作出線段AB關(guān)于y軸對(duì)稱的線段A′B′,并寫出點(diǎn)A、B的對(duì)稱點(diǎn)A′、B′的坐標(biāo);
(2)連接AA′和BB′,請(qǐng)?jiān)趫D中畫(huà)一條線段,將圖中的四邊形AA′B′B分成兩個(gè)圖形,其中一個(gè)是軸對(duì)稱圖形,另一個(gè)是中心對(duì)稱圖形,并且線段的一個(gè)端點(diǎn)為四邊形的頂點(diǎn),另一個(gè)端點(diǎn)在四邊形一邊的格點(diǎn)上.(每個(gè)小正方形的頂點(diǎn)均為格點(diǎn)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com