【題目】已知平行四邊形ABCD,連接AFCE、AF平分BC于點F,CE平分AD于點E

1)如圖1,求證:四邊形AFCE為平行四邊形;

2)如圖2,連接BD,分別交AF、CEGH,若,在不添加其他輔助線的情況下,直接找出圖中面積為平行四邊形ABCD面積的的三角形或四邊形.

【答案】1)詳見解析;(2,;四邊形,四邊形

【解析】

1)利用角平分線的性質(zhì)再結(jié)合平行四邊形的性質(zhì)進而得出AFEC,即可得出答案;

2)連接EF,證明EF分別為ADBC中點,即可根據(jù)三角形面積公式和平行四邊形面積公式,知面積為行四邊形ABCD面積的;再根據(jù)圖形的對稱性,可知四邊形和四邊形面積相等,即可得出答案.

證明:(1)∵AF平分∠BAD,CE平分∠BCD,

∴∠FAE=BAE,∠FCE=FCD,

∵四邊形ABCD是平行四邊形,

∴∠BAE=FCD,ADBC,

∴∠FAE=FCE,∠FCE=CED

∴∠FAE=CED

AFEC

又∵AECF,

∴四邊形AFCE為平行四邊形;

2)如圖,連接EF,

AF平分,

∴∠EAF=BAF,

∵四邊形ABCD為平行四邊形,

ADBC,

∴∠EAF=BFA,

∴∠BAF=BFA,

BA=BF,

BF=FC,即點FBC的中點,

同理可證點EAD中點,

,

易證四邊形,四邊形為全等圖形,

,

面積為平行四邊形ABCD面積的的三角形或四邊形有:,,四邊形,四邊形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進學(xué)生多樣化發(fā)展,武漢市第八十一中學(xué)每周三組織開展了社團活動,分別設(shè)置了體育、舞蹈、文學(xué)、音樂社團(要求人人參與社團,每人只能選擇一項),為了解學(xué)生喜愛哪種社團活動,學(xué)校做了一次抽樣調(diào)查,根據(jù)收集到的數(shù)據(jù),繪制成兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

1)此次共調(diào)查了   人,補齊舞蹈社團、音樂社團條形圖;

2)求音樂社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)   ;

3)若該校有1600名學(xué)生,請估計喜歡體育類社團的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了手機伴我健康行主題活動.他們隨機抽取部分學(xué)生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,EAB的中點,將ADE沿直線DE折疊后,點A落在點F處,DF交對角線ACG,則FG的長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線m>0)與x軸交于A,B兩點,點B在點A的右側(cè),頂點為C,拋物線與y軸交于點D,直線CAy軸于E,且

1)求點A,點B的坐標;

2)將BCO繞點C逆時針旋轉(zhuǎn)一定角度后,點B與點A重合,點O恰好落在y軸上,

①求直線CE的解析式;

②求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長是2,是高所在直線上的一個動點,連接,將線段繞點逆時針旋轉(zhuǎn)得到,連接,則在點運動過程中,線段長度的最小值是(

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點E,F是對角線BD上的兩點,且BEDF

1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;

2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A30°,點D是斜邊AB的中點,點GRtABC的重心,GEAC于點E.若BC6cm,則GE__cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;

3)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

同步練習(xí)冊答案