【題目】在生活中,人們經(jīng)常通過一些標(biāo)志性建筑確定位置,在數(shù)學(xué)中往往也是這樣.

1)將正整數(shù)如圖1的方式進行排列:

小明同學(xué)通過仔細(xì)觀察,發(fā)現(xiàn)每一行第一列的數(shù)字有一定的規(guī)律,所以每一行第一列的數(shù)字可以作為標(biāo)志數(shù),于是他認(rèn)為第七行第一列的數(shù)字是   ,第7行、第5列的數(shù)字是   

2)方法應(yīng)用

觀察下面一列數(shù):1,﹣23,﹣4,5,﹣6,7,…并將這列數(shù)按照如圖2方式進行排列:

按照上述方式排列下去,

問題1:第10行從左邊數(shù)第9個數(shù)是   ;

問題2:第n行有   個數(shù);(用含n的代數(shù)式表示)

問題3:數(shù)字2019在第   行,從左邊數(shù)第   個數(shù).

【答案】149,45;(2)﹣90;2n1;45,83

【解析】

1)找出規(guī)律第n行第一列的數(shù)字為n2,即可得出結(jié)果;(2)找出規(guī)律每一行最末的數(shù)字的絕對值是行數(shù)的平分,所有數(shù)取絕對值后是連續(xù)的正整數(shù),所有數(shù)中奇數(shù)為正整數(shù)、偶數(shù)為負(fù)整數(shù);問題1:第9行最末的數(shù)字的絕對值是81,第10行從左邊數(shù)第9個數(shù)的絕對值是81+990,因偶數(shù)為負(fù)整數(shù),故第10行從左邊數(shù)第9個數(shù)是﹣90;問題2:由每行數(shù)的個數(shù)為1,3,5,7…;則第n行有2n1個數(shù);問題3:由2019442+83,即可得出結(jié)果.

解:(1)∵每一行第一列的數(shù)字為該行的平分,

即第n行第一列的數(shù)字為n2,

∴第七行第一列的數(shù)字是:7249,

5列的數(shù)字是:49445,

故答案為:49,45;

2)由題意得:每一行最末的數(shù)字的絕對值是行數(shù)的平分,所有數(shù)取絕對值后是連續(xù)的正整數(shù),所有數(shù)中奇數(shù)為正整數(shù)、偶數(shù)為負(fù)整數(shù),每行數(shù)的個數(shù)為:1,35,7…;

問題1:∵第9行最末的數(shù)字的絕對值是81

∴第10行從左邊數(shù)第9個數(shù)的絕對值是81+990,

∵偶數(shù)為負(fù)整數(shù),

∴第10行從左邊數(shù)第9個數(shù)是﹣90;

問題2:∵每行數(shù)的個數(shù)為:1,3,5,7…;

∴第n行有2n1個數(shù);

問題3:∵2019442+83,

∴數(shù)字2019在第45行,從左邊數(shù)第83個數(shù);

故答案為:﹣90;2n145,83

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)觀察思考:如圖,線段AB上有兩個點C、D,請分別寫出以點A、B、C、D為端點的線段,并計算圖中共有多少條線段;

(2)模型構(gòu)建:如果線段上有m個點(包括線段的兩個端點),則該線段上共有多少條線段?請說明你結(jié)論的正確性;

(3)拓展應(yīng)用:某班45名同學(xué)在畢業(yè)后的一次聚會中,若每兩人握1次手問好,那么共握多少次手?

請將這個問題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+1y軸于點B,交x軸于點A,拋物線y=﹣ x2+bx+c經(jīng)過點B,與直線y=x+1交于點C(4,﹣2).

(1)求拋物線的解析式;

(2)如圖,橫坐標(biāo)為m的點M在直線BC上方的拋物線上,過點MMEy軸交直線BC于點E,以ME為直徑的圓交直線BC于另一點D,當(dāng)點Ex軸上時,求DEM的周長.

(3)將AOB繞坐標(biāo)平面內(nèi)的某一點按順時針方向旋轉(zhuǎn)90°,得到A1O1B1,點AO,B的對應(yīng)點分別是點A1,O1,B1,若A1O1B1的兩個頂點恰好落在拋物線上,請直接寫出點A1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OCAC的中點D、E、F、G依次連結(jié),得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點,OM=3∠OBC∠OCB互余,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車被譽為新四大發(fā)明之一,如圖1所示是某公司2017年向信陽市場提供一種共享自行車的實物圖,車架檔ACCD的長分別為45cm60cm,ACCD,座桿CE的長為20cm,點A,CE在同一條直線上,且∠CAB=75°,如圖2

1)求車架檔AD的長;

2)求車座點E到車架檔AB的距離.(結(jié)果精確到1cm,參考數(shù)據(jù):sin75°=0.9659,cos75°=0.2588,tan75°=3.7321

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進AB兩種商品共100件,花費3100元,其進價和售價如下表;

1A、B兩種商品分別購進多少件?

2)兩種商品售完后共獲取利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點,∠BOC36°.

1)OD平分∠AOC,∠DOE90°,如圖(a)所示,求∠AOE的度數(shù):

2)若∠AODAOC,∠DOE60°,如圖(b)所示,求∠AOE的度數(shù):

3)若∠AODAOC,∠DOE(n≥2,且n為正整數(shù)),如圖(c)所示,請用n含的代數(shù)式表示∠AOE的度數(shù)__________(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是直角梯形,AB=18cm,CD=15cm,AD=6cm,點PB點開始,沿BA邊向點A1cm/s的速度移動,點QD點開始,沿DC邊向點C2cm/s的速度移動,如果PQ分別從B、D同時出發(fā),P、Q有一點到達終點時運動停止,設(shè)移動時間為t

1t為何值時四邊形PQCB是平行四邊形?

2t為何值時四邊形PQCB是矩形?

3t為何值時四邊形PQCB是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P1是一塊邊長為1的正方形紙板,在P1的右上端剪去一個邊長為的正方形后得到圖形P2,然后依次剪去一個更小的正方形(其邊長為前一個被剪去的正方形邊長的一半)得到圖形P3、P4、P5,記紙板Pn的面積為Sn,則SnSn+1的值為( 。

A.nB.nC.n+1D.2n1

查看答案和解析>>

同步練習(xí)冊答案