【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為2 ;③當(dāng)AD=2時(shí),EF與半圓相切;④若點(diǎn)F恰好落在 上,則AD=2 ;⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過的面積是16 .其中正確結(jié)論的序號(hào)是 .
【答案】①、③、⑤
【解析】解:①連接CD,如圖1所示.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,
∴CE=CD.
∴∠E=∠CDE.
∵DF⊥DE,
∴∠EDF=90°.
∴∠E+∠F=90°,∠CDE+∠CDF=90°.
∴∠F=∠CDF.
∴CD=CF.
∴CE=CD=CF.
∴結(jié)論“CE=CF”正確.
②當(dāng)CD⊥AB時(shí),如圖2所示.
∵AB是半圓的直徑,
∴∠ACB=90°.
∵AB=8,∠CBA=30°,
∴∠CAB=60°,AC=4,BC=4 .
∵CD⊥AB,∠CBA=30°,
∴CD= BC=2 .
根據(jù)“點(diǎn)到直線之間,垂線段最短”可得:
點(diǎn)D在線段AB上運(yùn)動(dòng)時(shí),CD的最小值為2 .
∵CE=CD=CF,
∴EF=2CD.
∴線段EF的最小值為4 .
∴結(jié)論“線段EF的最小值為2 ”錯(cuò)誤.
③當(dāng)AD=2時(shí),連接OC,如圖3所示.
∵OA=OC,∠CAB=60°,
∴△OAC是等邊三角形.
∴CA=CO,∠ACO=60°.
∵AO=4,AD=2,
∴DO=2.
∴AD=DO.
∴∠ACD=∠OCD=30°.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,
∴∠ECA=∠DCA.
∴∠ECA=30°.
∴∠ECO=90°.
∴OC⊥EF.
∵EF經(jīng)過半徑OC的外端,且OC⊥EF,
∴EF與半圓相切.
∴結(jié)論“EF與半圓相切”正確.
④當(dāng)點(diǎn)F恰好落在 上時(shí),連接FB、AF,如圖4所示.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,
∴ED⊥AC.
∴∠AGD=90°.
∴∠AGD=∠ACB.
∴ED∥BC.
∴△FHC∽△FDE.
∴ .
∵FC= EF,
∴FH= FD.
∴FH=DH.
∵DE∥BC,
∴∠FHC=∠FDE=90°.
∴BF=BD.
∴∠FBH=∠DBH=30°.
∴∠FBD=60°.
∵AB是半圓的直徑,
∴∠AFB=90°.
∴∠FAB=30°.
∴FB= AB=4.
∴DB=4.
∴AD=AB﹣DB=4.
∴結(jié)論“AD=2 ”錯(cuò)誤.
⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對(duì)稱,
點(diǎn)D與點(diǎn)F關(guān)于BC對(duì)稱,
∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),
點(diǎn)E的運(yùn)動(dòng)路徑AM與AB關(guān)于AC對(duì)稱,
點(diǎn)F的運(yùn)動(dòng)路徑NB與AB關(guān)于BC對(duì)稱.
∴EF掃過的圖形就是圖5中陰影部分.
∴S陰影=2S△ABC
=2× ACBC
=ACBC
=4×4
=16 .
∴EF掃過的面積為16 .
∴結(jié)論“EF掃過的面積為16 ”正確.
所以答案是:①、③、⑤.
【考點(diǎn)精析】本題主要考查了垂線段最短和平行線的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;現(xiàn)實(shí)生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用;由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=5,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,當(dāng)且點(diǎn)在直線的上方時(shí),解決下列問題:(友情提示:,,.
(1)①若,則的度數(shù)為 ;
②若,則的度數(shù)為 ;
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請(qǐng)直接寫出的角度所有可能的值(不必說明理由);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點(diǎn)B作⊙O的切線BM,弦CD∥BM,交AB于點(diǎn)F,且=,連接AC,AD,延長AD交BM于點(diǎn)E.
(1)求證:△ACD是等邊三角形.
(2)連接OE,若DE=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E,F(xiàn)同時(shí)由A,C兩點(diǎn)出發(fā),分別沿AB,CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)B,C在x軸上,A,D兩點(diǎn)分別在反比例函數(shù)y=﹣ (x<0)與y= (x>0)的圖象上,則ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:(﹣1)3﹣( )﹣2× +6×|﹣ |
(2)化簡(jiǎn)并求值:( )÷ ,其中a=1,b=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)E是邊AB的中點(diǎn),點(diǎn)O是線段AE上的一個(gè)動(dòng)點(diǎn)(不與A、E重合),以O(shè)為圓心,OB為半徑的圓與邊AD相交于點(diǎn)M,過點(diǎn)M作⊙O的切線交DC于點(diǎn)N,連接OM、ON、BM、BN.記△MNO、△AOM、△DMN的面積分別為S1、S2、S3 , 則下列結(jié)論不一定成立的是( )
A.S1>S2+S3
B.△AOM∽△DMN
C.∠MBN=45°
D.MN=AM+CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(2,2)關(guān)于直線y=k(k>0)的對(duì)稱點(diǎn)恰好落在x軸的正半軸上,則k的值是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com