精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,過點B作⊙O的切線BM,弦CD∥BM,交AB于點F,且=,連接AC,AD,延長AD交BM于點E.

(1)求證:△ACD是等邊三角形.
(2)連接OE,若DE=2,求OE的長.

【答案】
(1)

證明:∵AB是⊙O的直徑,BM是⊙O的切線,

∴AB⊥BE,

∵CD∥BE,

∴CD⊥AB,

=

=,

==,

∴AD=AC=CD,

∴△ACD是等邊三角形;


(2)

解:連接OE,過O作ON⊥AD于N,由(1)知,△ACD是等邊三角形,

∴∠DAC=60°

∵AD=AC,CD⊥AB,

∴∠DAB=30°,

∴BE=AE,ON=AO,

設⊙O的半徑為:r,

∴ON=r,AN=DN=r,

∴EN=2+,BE=AE=,

在Rt△NEO與Rt△BEO中,

OE2=ON2+NE2=OB2+BE2,

即(2+(2+2=r2+

∴r=2,

∴OE2=+25=28,

∴OE=2


【解析】(1)由AB是⊙O的直徑,BM是⊙O的切線,得到AB⊥BE,由于CD∥BE,得到CD⊥AB,根據垂徑定理得到=,于是得到==,問題即可得證;
(2)連接OE,過O作ON⊥AD于N,由(1)知,△ACD是等邊三角形,得到∠DAC=60°又直角三角形的性質得到BE=AE,ON=AO,設⊙O的半徑為:r則ON=r,AN=DN=r,由于得到EN=2+,BE=AE=,在Rt△DEF與Rt△BEO中,由勾股定理列方程即可得到結論.
此題考查了圓的綜合應用以及等邊三角形的判定與性質和切線的性質以及勾股定理的應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,AB=6cm,BC=8cm,若將矩形對角線BD對折,使B點與D點重合,四邊形EBFD是菱形嗎?請說明理由,并求這個菱形的邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為原點,直線y=kx+b交x軸于A(﹣3,0),交y軸于B,且三角形AOB的面積為6,則k=(  )

A. B. C. ﹣4或4 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:

(1)甲、乙兩組單獨工作一天,商店應各付多少元?

(2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應付費用較少?

(3)若裝修完后,商店每天可盈利200元,你認為如何安排施工有利用商店經營?說說你的理由.(可以直接用(1)(2)中的已知條件)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正比例函數y=x的圖象與一次函數y=kx﹣k的圖象的交點坐標為A(m,2).

(1)求m的值和一次函數的解析式;

(2)設一次函數y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;

(3)直接寫出使函數y=kx﹣k的值大于函數y=x的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點,(點A在點B的左側),與直線AC交于點C(2,3),直線AC與拋物線的對稱軸l相交于點D,連接BD.

(1)求拋物線的函數表達式,并求出點D的坐標;
(2)如圖2,若點M、N同時從點D出發(fā),均以每秒1個單位長度的速度分別沿DA、DB運動,連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說明理由,當運動時間t為何值時,點D′恰好落在x軸上?
(3)在平面內,是否存在點P(異于A點),使得以P、B、D為頂點的三角形與△ABD相似(全等除外)?若存在,請直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結論:①CE=CF;②線段EF的最小值為2 ;③當AD=2時,EF與半圓相切;④若點F恰好落在 上,則AD=2 ;⑤當點D從點A運動到點B時,線段EF掃過的面積是16 .其中正確結論的序號是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F兩點,連結BE,DF.
(1)求證:△DOE≌△BOF;
(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】曲靖市某商場投入19200元資金購進甲、乙兩種飲料共600箱,飲料的成本價和銷售價如表所示:

類別/單價

成本價

銷售價(元/箱)

24

36

36

52

(1)該商場購進甲、乙兩種飲料各多少箱?

(2)全部售完600箱飲料,該商場共獲得利潤多少元?

查看答案和解析>>

同步練習冊答案