如圖,點A是半圓上一個三等分點,點B是的中點,點P是直徑MN上一動點,若⊙O的半徑為1,則AP+BP的最小值是 .
科目:初中數(shù)學 來源: 題型:
如圖,圓錐的側(cè)面積恰好等于其底面積的2倍,則該圓錐側(cè)面展開圖所對應扇形圓心角的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在矩形ABCD中,AB=2,BC=4,⊙D的半徑為1.現(xiàn)將一個直角三角板的直角頂點與矩形的對稱中心O重合,繞著O點轉(zhuǎn)動三角板,使它的一條直角邊與⊙D切于點H,此時兩直角邊與AD交于E,F(xiàn)兩點,則EH的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
初中生對待學習的態(tài)度一直是教育工作者關(guān)注的問題之一.為此無錫市教育局對我市部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近80000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點E與正方形ABCD的頂點A重合.三角板的一邊交CD于點F,另一邊交CB的延長線于點G.
(1)求證:EF=EG;
(2)如圖2,移動三角板,使頂點E始終在正方形ABCD的對角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由;
(3)如圖3,將(2)中的“正方形ABCD”改為“矩形ABCD”,且使三角板的一邊經(jīng)過點B,其他條件不變,若AB=a,BC=b,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
假期到了,學校組織19名女教師去外地培訓,住宿時有2人間和3人間可供安排,若每個房間都要住滿,共有幾種安排方案( 。
A.5種 B.4種 C.3種 D.2種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式。已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中二次項系數(shù)a的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com