在6張完全相同的卡片上分別畫(huà)上線(xiàn)段、等邊三角形、平行四邊形、直角梯形、雙曲線(xiàn)、圓,在看不見(jiàn)圖形的情況下隨機(jī)摸出1張,這張卡片上的圖形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形的概率是( )(原創(chuàng))
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(小)值。
對(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b==-+=+ ,
又∵≥0, ∴+ ≥0+,即≥.
(1)根據(jù)上述內(nèi)容,回答下列問(wèn)題:在≥(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,當(dāng)且僅當(dāng)a、b滿(mǎn)足 時(shí),a+b有最小值.
(2)思考驗(yàn)證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線(xiàn),AD=2a,DB=2b, 試根據(jù)圖形驗(yàn)證≥成立,并指出等號(hào)成立時(shí)的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖像上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連結(jié)DF、EF,求四邊形ADFE面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在△ABC中,∠C為銳角,分別以AB,AC為直徑作半圓,過(guò)點(diǎn)B,A,C作,如圖所示.若AB=4,AC=2,S1﹣S2=,則S3﹣S4的值是 (改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,兩個(gè)同心圓的圓心是O,大圓的半徑為10,小圓的半徑為6,AD是大圓的直徑.大圓的弦AB,BE分別與小圓相切于點(diǎn)C,F.AD,BE相交于點(diǎn)G,連接BD.
(1)求BD 的長(zhǎng);
(2)求∠ABE+2∠D的度數(shù);
(3)求的值.(改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,點(diǎn)D是弧BC的中點(diǎn),連結(jié)CD、AD、OD,給出以下四個(gè)結(jié)論:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正確結(jié)論的序號(hào)是( )
A.①③ B.②④ C.①④ D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線(xiàn)y=x2﹣x與x軸交于O,A兩點(diǎn).半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線(xiàn)向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線(xiàn)向靠近點(diǎn)O的方向移動(dòng).兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的橫坐標(biāo)為t.若⊙P與⊙Q相離,則t的取值范圍是_____ ____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖, △ABD≌△ACE, AB=AC,寫(xiě)出圖中的對(duì)應(yīng)邊和對(duì)應(yīng)角。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知∠1=∠2,若再增加一個(gè)條件就能使結(jié)論“AB•ED=AD•BC”成立,則這個(gè)條件可以是 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com