【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(2 ,0),(0,10),M是△AOB外接圓⊙C上的一點(diǎn),且∠AOM=30°,則點(diǎn)M的坐標(biāo)為

【答案】(4 ,4).
【解析】∵A,B兩點(diǎn)的坐標(biāo)分別為(2 ,0),(0,10),

∴OB=10,OA=2 ,

∴AB= =4 ,

∵∠AOB=90°,

∴AB是直徑,CM=2 ,

∴Rt△AOB外接圓的圓心為AB中點(diǎn),

∴C點(diǎn)坐標(biāo)為( ,5),

過點(diǎn)C作CF∥OA,過點(diǎn)M作ME⊥OA于E交CF于F,作CN⊥OE于N,如圖所示:

則ON=AN= OA=

設(shè)ME=x,

∵∠AOM=30°,

∴OE= x

∴∠CFM=90°,

∴MF=5﹣x,CF= x﹣ ,CM=2 ,

在△CMF中,根據(jù)勾股定理得:( x﹣ 2+(5﹣x)2=(2 2,

解得:x=4或x=0(舍去),

∴OE= x=4

所以答案是:(4 ,4).


【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓周角定理的相關(guān)知識(shí),掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB是一角度為10°的鋼架,要使鋼架更加牢固,需在其內(nèi)部添加一些鋼管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足夠長(zhǎng)的情況下,最多能添加這樣的鋼管的根數(shù)為 _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)(3)班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào)).

根據(jù)以上信息,解答下列問題:

(1)該班共有多少名學(xué)生?其中穿175型校服的學(xué)生有多少人?

(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺的部分補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,請(qǐng)計(jì)算185型校服所對(duì)應(yīng)扇形圓心角的大小;

(4)求該班學(xué)生所穿校服型號(hào)的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是橘子的銷售額隨橘子賣出質(zhì)量的變化表:

質(zhì)量/千克

1

2

3

4

5

6

7

8

9

銷售額/元

2

4

6

8

10

12

14

16

18

1)這個(gè)表反映了哪兩個(gè)變量之間的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?

2)當(dāng)橘子賣出5千克時(shí),銷售額是_______元.

3)如果用表示橘子賣出的質(zhì)量,表示銷售額,按表中給出的關(guān)系,之間的關(guān)系式為______.

4)當(dāng)橘子的銷售額是100元時(shí),共賣出多少千克橘子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中,用數(shù)字表示的∠1、∠2∠3、∠4各角中,錯(cuò)誤的判斷是(  )

A. 若將AC作為第三條直線,則∠1∠3是同位角

B. 若將AC作為第三條直線,則∠2∠4是內(nèi)錯(cuò)角

C. 若將BD作為第三條直線,則∠2∠4是內(nèi)錯(cuò)角

D. 若將CD作為第三條直線,則∠3∠4是同旁內(nèi)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,過點(diǎn)O作兩條射線OM、ON,且AOMCON90°

(1)OC平分AOM,求AOD的度數(shù).

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EFAD于點(diǎn)G

1)求證:AD垂直平分EF

2)若BAC=60°,猜測(cè)DGAG間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙A和⊙B的半徑分別為5和1,AB=3,點(diǎn)O在直線AB上,⊙O與⊙A、⊙B都內(nèi)切,那么⊙O半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);

(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案