【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),且E為AD的中點(diǎn),FC=3DF,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為8,求△BEG的面積.
【答案】(1)詳見(jiàn)解析;(2)80.
【解析】
(1)根據(jù)兩邊成比例夾角相等兩三角形相似證明即可.
(2)證明△BAE∽△GEB,利用=,求出EG即可解決問(wèn)題.
(1)證明:設(shè)正方形的邊長(zhǎng)為4a.
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD=4a,∠A=∠D=90°,
∵AE=ED=2a,DF=a,CF=3a,
∴=2,=2,
∴=,
∴△ABE∽△DEF.
(2)解:∵△ABE∽△DEF,
∴∠AEB=∠EFD,
∵∠EFD+∠DEF=90°,
∴∠AEB+∠DEF=90°,
∴∠BEF=90°,
∵AB=8,AE=4,∠A=90°,
∴BE===4,
∵AE∥∥BG,
∴∠AEB=∠EBG,
∵∠A=∠BEG=90°,
∴△BAE∽△GEB,
∴=,
∴=,
∴EG=8
∴EG=2,
∴S△BEG=BEEG=×4×8=80.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售一種商品,經(jīng)市場(chǎng)調(diào)査發(fā)現(xiàn),該商品的周銷(xiāo)售量y(件)是售價(jià)x(元/件)的一次函數(shù).其售價(jià)、周銷(xiāo)售量、周銷(xiāo)售利潤(rùn)w(元)的三組對(duì)應(yīng)值如表:
售價(jià)x(元/件) | 50 | 60 | 80 |
周銷(xiāo)售量y(件) | 100 | 80 | 40 |
周銷(xiāo)售利潤(rùn)w(元) | 1000 | 1600 | 1600 |
注:周銷(xiāo)售利潤(rùn)=周銷(xiāo)售量×(售價(jià)﹣進(jìn)價(jià))
(1)求y關(guān)于x的函數(shù)解析式_____;
(2)當(dāng)售價(jià)是_____元/件時(shí),周銷(xiāo)售利潤(rùn)最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,1),B(1,-2),C(3,-1),P(m,n)是△ABC的邊AB上一點(diǎn).
(1)畫(huà)出△A1B1C1,使△A1B1C1與△ABC關(guān)于點(diǎn)O成中心對(duì)稱,并寫(xiě)出點(diǎn)A、P的對(duì)應(yīng)點(diǎn)A1、P1的坐標(biāo).
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫(huà)出將△A1B1C1放大后的△A2B2C2,并分別寫(xiě)出點(diǎn)A1、P1的對(duì)應(yīng)點(diǎn)A2、P2的坐標(biāo).
(3)求sin∠B2A2C2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在正方形ABCD和正方形DEFG中,頂點(diǎn)B、D、F在同一直線上,H是BF的中點(diǎn).
(1)如圖①,若AB=1,DG=2,求BH的長(zhǎng);
(2)如圖②,連接AH、GH,求證:AH=GH且AH⊥GH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線EF與⊙O交于G、H兩點(diǎn),若⊙O的半徑為8,則GE+FH的最大值為( )
A.8B.12C.16D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(﹣2,0),對(duì)稱軸為直線x=1.有以下結(jié)論:①abc>0;②7a+c<0;③a+b≤m(am+b)(m為任意實(shí)數(shù))④若A(x1,m),B(x2,m)是拋物線上的兩點(diǎn),當(dāng)x=x1+x2時(shí),y=c;⑤若方程a(x+2)(4﹣x)=﹣1的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.其中正確結(jié)論的個(gè)數(shù)有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com