【題目】如圖,四邊形ABCD是正方形,E、F分別是了AB、AD上的一點(diǎn),且BF⊥CE,垂足為G,求證:AF=BE.

【答案】證明:∵四邊形ABCD是正方形, ∴AB=BC,∠A=∠CBE=90°,
∵BF⊥CE,
∴∠BCE+∠CBG=90°,
∵∠ABF+∠CBG=90°,
∴∠BCE=∠ABF,
在△BCE和△ABF中
,
∴△BCE≌△ABF(ASA),
∴BE=AF.
【解析】直接利用已知得出∠BCE=∠ABF,進(jìn)而利用全等三角形的判定與性質(zhì)得出AF=BE.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

1)求證:AMAD+MC

2)若AD4,求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的角平分線,點(diǎn)F、E分別在邊AC、AB上,連接DE、DF,且∠AFD+B180°.

1)求證:BDFD;

2)當(dāng)AF+FDAE時(shí),求證:∠AFD2AED

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)PAB邊上一點(diǎn)(不與AB重合),過(guò)點(diǎn)PPQCP,交AD邊于點(diǎn)Q,且,連結(jié)

1)求證:四邊形是矩形;

2)若CP=CDAP=2,AD=6時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于 BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形. (Ⅰ)根據(jù)以上尺規(guī)作圖的過(guò)程,求證:四邊形ABEF是菱形;
(Ⅱ)若菱形ABEF的周長(zhǎng)為16,AE=4 ,求∠C的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中所給出的信息解答下列問(wèn)題:

1)本次抽樣調(diào)查的樣本容量是

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若某商場(chǎng)天內(nèi)有人次支付記錄,估計(jì)選擇微信支付的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),且BF=ED,求證:AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)ECD上,點(diǎn)FAB上,連接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如圖1,求證:四邊形DFBE是平行四邊形;

(2)如圖2,若ECD的中點(diǎn),連接GH,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中以GH為邊或以GH為對(duì)角線的所有平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等腰△ABC中,AB=AC,∠BAC=30°,AB邊上的中垂線DE分別交AB,AC于點(diǎn)D、E,∠BAC的平分線交DE于點(diǎn)F.連接BF、CF、BE.

(1)求證:△BCF為等邊三角形;

(2)猜想EF、EB、EC三條線段的關(guān)系,并說(shuō)明理由;

(3)如圖2,在BE的延長(zhǎng)線上取一點(diǎn)M,連接AM,使AM=AB,連接MC并延長(zhǎng)交AF的延長(zhǎng)線于點(diǎn)M.求證:AN=MC.

查看答案和解析>>

同步練習(xí)冊(cè)答案