【題目】如圖,在某建筑物AC上,豎直掛著“共建文明犍為,共享犍為文明”的宣傳條幅BC,小明站在點(diǎn)F處,看條幅頂端B,測得仰角為30°,再往條幅方向前行10米到達(dá)點(diǎn)E處,看到條幅頂端B,測得仰角為60°,求宣傳條幅BC的長(小明的身高不計,結(jié)果精確到0.1米).1.732

【答案】宣傳條幅BC的長約8.7米.

【解析】

先根據(jù)直角三角形中BFE30°,設(shè)出BC并求出CF,再根據(jù)直角三角形BCE可得CE的長,然后利用CF-CE=10求解即可.

設(shè)BC的長為x,

RtBCF中,

∵∠BFE30°,

tan30°=

CFx,

RtBCE中,

∵∠BEC60°,

tan60°=,

CEx

EF10米,

xx10

解得:x58.7(米).

答:宣傳條幅BC的長約8.7米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y的圖象相交于Am,6),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)點(diǎn)Px軸上,連接AP,BP,若△ABP的面積為18,求滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為推薦選手參加學(xué)校舉辦的祖國在我心中演講比賽活動,先在班級中進(jìn)行預(yù)賽,班主任根據(jù)學(xué)生的成績從高到低劃分為A,B,C,D四個等級,并繪制了不完整的兩種統(tǒng)計圖表.請根據(jù)圖中提供的信息,回答下列問題:

1a的值為 ;

2)求C等級對應(yīng)扇形的圓心角的度數(shù);

3)獲得A等級的4名學(xué)生中恰好有13女,該班將從中隨機(jī)選取2人,參加學(xué)校舉辦的演講比賽,請利用列表法或畫樹狀圖法,求恰好選中一男一女參加比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AB=4,BC=2,正方形ADEF的邊長為2,FA、B在同一直線上,正方形ADEF向右平移到點(diǎn)FB重合,點(diǎn)F的平移距離為x,平移過程中兩圖重疊部分的面積為y,則yx的關(guān)系的函數(shù)圖象表示正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(4,0),點(diǎn)C坐標(biāo)為(0,4),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)Dx軸的垂線,垂足為E,連接BD

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)點(diǎn)F是拋物線上的動點(diǎn),當(dāng)∠FBA=2BDE時,求點(diǎn)F的坐標(biāo);

(3)若點(diǎn)Px軸上方拋物線上的動點(diǎn),以PB為邊作正方形PBGH,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)GH恰好落在y軸上時,請直接寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD的頂點(diǎn)B,Cx軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,m+3)和CD上的點(diǎn)E,且OB-CE=1。直線lO、E兩點(diǎn),則tanEOC的值為( )

A. B. 5 C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017江西省)如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時,望向熒光屏幕畫面的視線角”α約為20°,而當(dāng)手指接觸鍵盤時,肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等腰三角形ABC中,ABAC8BC14.如圖②,在底邊BC上取一點(diǎn)D,連結(jié)AD,使得∠DAC=∠ACD.如圖③,將ACD沿著AD所在直線折疊,使得點(diǎn)C落在點(diǎn)E處,連結(jié)BE,得到四邊形ABED.則BE的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,2),(5,3),則下列說法正確的是( 。

①拋物線與y軸有交點(diǎn)

②若拋物線經(jīng)過點(diǎn)(22),則拋物線的開口向上

③拋物線的對稱軸不可能是x=3

④若拋物線的對稱軸是x=4,則拋物線與x軸有交點(diǎn)

A.①②③④B.①②③C.①③④D.②④

查看答案和解析>>

同步練習(xí)冊答案