【題目】已知:如圖,ABC中,∠BAD=EBC,ADBEF

1)試說明:∠BFD=ABC;

2)若∠ABC=40°,EGADEHBE,求∠HEG的度數(shù).

【答案】1)見解析;(2)∠HEG=50°

【解析】

1)根據(jù)三角形的外角性質即可得出結論;
2)根據(jù)三角形內角和和互余進行分析解答即可.

1∵∠BFD△ABF的外角

∴∠BFD=∠BAD+∠ABF

∵∠BAD=∠EBC

∴∠BAD+∠ABF=∠EBC+∠ABF

∠BFD=∠ABC

2∵∠ABC=40°∠BFD=∠ABC

∴∠BFD=40°

∵EG∥AD

∴∠BFD=∠BEG

∴∠BEG=40°

∵EH⊥BE

∴∠BEH=90°

∴∠HEG=∠BEH-∠BEG=50°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,為邊上一動點,,,中點,則的最小值為(

A.B.4C.5D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學想利用一些測量工具和所學的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進行兩次測量,于是在陽光下,他們首先利用影長進行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內,木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究:探究與應用
(1)如圖1,在正方形ABCD中,AB=2,點E是邊AD的中點,請在對角線AC上找一點P,使得PE+PD的值最小,并求出這個最小值;(不用寫作法,保留作圖痕跡)

(2)如圖2,在矩形ABCD中,AB=6,BC=8,點E是邊BC的中點,若點P是邊AB上一動點,當△PED的周長最小時,求BP的長度;
問題解決:

(3)某市規(guī)劃在市中心廣場內修建一個矩形的活動中心,如圖3,矩形OABC是它的規(guī)劃圖紙,其中A為入口,已知OA=30,OC=20,點E是邊AB的中點,以頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系,點D是邊OA上一點,若將△ABD沿BD翻折,點A恰好落在邊BC上的點F處,在點F處設一出口,點M、N分別是邊OA、OC上的點,現(xiàn)規(guī)劃在點M、N、F、E四處各安置一個健身器材,并依次修建MN、NF、FE及EM四條小路,則是否存在點M、N,使得這四條小路的總長度最。咳舸嬖,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y= (x>0)的圖象上一點,OA與反比例函數(shù)y= (x>0)的圖象交于點C,點B在y軸的正半軸上,且AB=OA,若△ABC的面積為6,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x滿足,求的值.

解:設,,則,,

所以== ==32-2×2=5

請運用上面的方法求解下面的問題:

1)若滿足,求 的值;

2)已知正方形ABCD的邊長為,E、F分別是AD、DC上的點,且AE=1,CF=3,長方形EMFD的面積是35,求長方形EMFD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成相應任務:

折紙三等分角
三等分角問題(trisection of an angle)是二千四百年前,古希臘人提出的幾何三大作圖問題之一(三等分任意角、化圓為方、倍立方),即用圓規(guī)與直尺(沒有刻度,只能做直線的尺子)把一任意角三等分,這問題曾吸引著許多人去研究,但無一成功.1837年法國數(shù)學家凡齊爾(1814~1848)運用代數(shù)方法證明了,僅用尺規(guī)不可鞥呢三等分角.
如果作圖工具沒有限制,將條件放寬,將任意角三等分是可以解決的.下面介紹一種折紙三等分任意銳角的方法:
①在正方形紙片上折出任意∠SBC,將正方形ABCD對折,折痕為記為MN,再將矩形MBCN對折,折痕記為EF,得到圖1;
②翻折左下角使點B與EF上的點T重合,點M與SB上的點P重合,點E對折后的對應點記為Q,折痕為記為GH,得到圖2;
③折出射線BQ,BT,得到圖3,則射線BQ,BT就是∠SBC的三等分線.

下面是證明BQ,BT是∠SBC三等分線的部分過程:
證明:過T作TK⊥BC,垂足為K,則四邊形EBKT為矩形
根據(jù)折疊,得EB=QT,∠EBT=∠QTB,BT=TB
∴△EBT≌△QTB,
∴∠BQT=∠TEB=90°,
∴BQ⊥PT

學習任務:
(1)將剩余部分的證明過程補充完整;
(2)若將圖1中的點S與點D重合,重復材料中的操作過程得到圖4,請利用圖4,直接寫出tan15°=(不必化簡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為 ,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB的延長線于點F,則EF的長為( )

A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,某化工廠一期工程完成后購買了臺甲型和臺乙型污水處理設備,共花費資金萬元,且每臺乙型設備的價格是每臺甲型設備價格的,實際運行中發(fā)現(xiàn),每臺甲型設備每月能處理污水噸,每臺乙型設備每月能處理污水噸.今年該廠二期工程即將完成產(chǎn)生的污水將大大增加,于是該廠決定再購買甲、乙兩種型號設備共臺用于二期工程的污水處理,預算本次購買資金不超過萬元,預計二期工程完成后每月將產(chǎn)生不少于噸污水.

1)請你計算每臺甲型設備和每臺乙型設備的價格各是多少元;

2)請你求出用于二期工程的污水處理設備的所有購買方案.

查看答案和解析>>

同步練習冊答案