【題目】已知是⊙的直徑,點(diǎn)在⊙上.
(1)如圖①,點(diǎn)在⊙上,且,若20°,求的大;
(2)如圖②,過點(diǎn)作⊙的切線,交的延長(zhǎng)線于點(diǎn),若⊙的直徑為,,求的長(zhǎng).
【答案】(1);(2)EA=.
【解析】
(1)如圖①,連接OC,根據(jù)圓周角定理求出,根據(jù)可求得,進(jìn)而可求的大;
(2)如圖②,連接OC,首先證明△ACO是等邊三角形,然后根據(jù)切線的性質(zhì)可得△ECO是直角三角形且∠E=30°,再根據(jù)含30度直角三角形的性質(zhì)可得答案.
解:(1)如圖①,連接OC,
∵,
∴,
∵,
∴,
∴;
(2)如圖②,連接OC,
∵⊙的直徑為,
∴OA=OC=,
∵AC=,
∴△ACO是等邊三角形,
∴∠AOC=60°,
∵CE切⊙于點(diǎn)C,
∴∠ECO=90°,
∴在Rt△ECO中,∠E=30°,
∴OE=2OC=,
∴EA=OE-OA=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則:
(1)①∠ACE的度數(shù)是 ; ②線段AC,CD,CE之間的數(shù)量關(guān)系是 .
(2)如圖②,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請(qǐng)判斷線段AC,CD,CE之間的數(shù)量關(guān)系,并說明理由;
(3)如圖②,AC與DE交于點(diǎn)F,在(2)條件下,若AC=8,求AF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸正半軸相交,其頂點(diǎn)坐標(biāo)為,下列結(jié)論:①;②;③;④.其中正確的有______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過的三個(gè)頂點(diǎn),與軸相交于,點(diǎn)坐標(biāo)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),點(diǎn)在軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)為線段上一動(dòng)點(diǎn),過點(diǎn)作軸,軸, 垂足分別為點(diǎn),,當(dāng)四邊形為正方形時(shí),求出點(diǎn)的坐標(biāo);
(3)將(2) 中的正方形沿向右平移,記平移中的正方形為正方形,當(dāng)點(diǎn)和點(diǎn)重合時(shí)停止運(yùn)動(dòng), 設(shè)平移的距離為,正方形的邊與交于點(diǎn),所在的直線與交于點(diǎn), 連接,是否存在這樣的,使是等腰三角形?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來越受到社會(huì)的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖1、圖2補(bǔ)充完整;
(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動(dòng)點(diǎn),N是AC邊上的一動(dòng)點(diǎn),則MN+MC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳潤(rùn)商場(chǎng)銷售,兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如表所示:
進(jìn)價(jià)(萬元/套) | 1.5 | 1.2 |
售價(jià)(萬元/套) | 1.65 | 1.4 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲 毛利潤(rùn)9萬元.
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn),兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少種設(shè)備的購(gòu)進(jìn)數(shù)量,增加種設(shè)備的購(gòu)進(jìn)數(shù)量,已知種設(shè)備增加的數(shù)量 是種設(shè)備減少的數(shù)量的1.5倍.若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的 總資金不超過69萬元,問種設(shè)備購(gòu)進(jìn)數(shù)量至多減少多少套?
(3)在(2)的條件下,該商場(chǎng)所能獲得的最大利潤(rùn)是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)社會(huì)的發(fā)展,人民對(duì)于美好生活的追求越來越高.某社區(qū)為了了解家庭對(duì)于文化教育的消費(fèi)悄況,隨機(jī)抽取部分家庭,對(duì)每戶家庭的文化教育年消費(fèi)金額進(jìn)行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖表.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問題:
組別 | 家庭年文化教育消費(fèi)金額x(元) | 戶數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
(1)本次被調(diào)査的家庭有__________戶,表中 m=__________;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計(jì)圖中,D組所在扇形的圓心角是__________度;
(3)這個(gè)社區(qū)有2500戶家庭,請(qǐng)你估計(jì)家庭年文化教育消費(fèi)10000元以上的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過A(0,2)、B(4,0)兩點(diǎn).
(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這條拋物線于N,求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?
(3)在(1)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,請(qǐng)直接寫出第四個(gè)頂點(diǎn)D的所有坐標(biāo)(直接寫出結(jié)果,不必寫解答過程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com