【題目】已知,在RtABC中,∠C=90°,AC=9,BC=12,點(diǎn) D、E 分別在邊AC、BC上,且CD:CE=3︰4.將CDE繞點(diǎn)D順時針旋轉(zhuǎn),當(dāng)點(diǎn)C落在線段DE上的點(diǎn) F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.

【答案】6

【解析】分析設(shè)CD=3x,CE=4x,BE=124x依據(jù)∠EBF=EFB,可得EF=BE=124x,由旋轉(zhuǎn)可得DF=CD=3x,再根據(jù)RtDCECD2+CE2=DE2即可得到(3x2+4x2=(3x+124x2,進(jìn)而得出CD=6

詳解如圖所示,設(shè)CD=3x,CE=4xBE=124x=,DCE=ACB=90°,∴△ACB∽△DCE,∴∠DEC=ABC,ABDE,∴∠ABF=BFE.又∵BF平分∠ABC,∴∠ABF=CBF∴∠EBF=EFB,EF=BE=124x由旋轉(zhuǎn)可得DF=CD=3xRtDCE中,∵CD2+CE2=DE2,3x2+4x2=(3x+124x2,解得x1=2x2=﹣3(舍去),CD=2×3=6故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知:點(diǎn)A和點(diǎn)B(如圖1),根據(jù)條件畫圖(用三角板和量角器):

①畫射線BA;

②畫∠ABC90°,使得點(diǎn)C在線段AB上方且ABBC;

③連接AC,畫出∠ABC的角平分線BD,交ACD.通過觀察、度量、猜想獲得線段BD、AC的關(guān)系.

2)已知:如圖2,∠AOB150,OC平分∠AOB,AODO,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系(如圖),直線的經(jīng)過點(diǎn)和點(diǎn).

(1)求、的值;

(2)如果拋物線經(jīng)過點(diǎn)、,該拋物線的頂點(diǎn)為點(diǎn),求的值;

(3)設(shè)點(diǎn)在直線上,且在第一象限內(nèi),直線軸的交點(diǎn)為點(diǎn),如果,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】植樹節(jié)期間,市團(tuán)委組織部分中學(xué)的團(tuán)員去東岸濕地公園植樹.三亞市第二中學(xué)七(3)班團(tuán)支部領(lǐng)到一批樹苗,若每人植4棵樹,還剩37棵;若每人植6棵樹,則最后一人有樹植,但不足3棵,這批樹苗共有_____棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y=﹣x+3x軸相交于點(diǎn)A,直線l2y=kx+b經(jīng)過點(diǎn)(3﹣1),與x軸交于點(diǎn)B6,0),與y軸交于點(diǎn)C,與直線l1相交于點(diǎn)D

1)求直線l2的函數(shù)關(guān)系式;

2)點(diǎn)Pl2上的一點(diǎn),若ABP的面積等于ABD的面積的2倍,求點(diǎn)P的坐標(biāo);

3)設(shè)點(diǎn)Q的坐標(biāo)為(m,3),是否存在m的值使得QA+QB最小?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y+1x軸、y軸分別交于點(diǎn)AB,以線AB為直角邊在第一象限內(nèi)作等腰RtABC,∠BAC=90o、點(diǎn)P(x、y)為線段BC上一個動點(diǎn)(點(diǎn)P不與B、C重合),設(shè)△OPA的面積為S

1)求點(diǎn)C的坐標(biāo);

2)求S關(guān)于x的函數(shù)解析式,并寫出x的的取值范圍;

3)△OPA的面積能于嗎,如果能,求出此時點(diǎn)P坐標(biāo),如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)Ay軸的正半軸上,點(diǎn)Cx軸的正半軸上,線段OA,OC的長分別是m,n且滿足(m-6)2+0,點(diǎn)D是線段OC上一點(diǎn),將△AOD沿直線AD翻折,點(diǎn)O落在矩形對角線AC上的點(diǎn)E

1)求線段OD的長

2)求點(diǎn)E的坐標(biāo)

3DE所在直線與AB相交于點(diǎn)M,點(diǎn)Nx軸的正半軸上,以M、A、N、C為頂點(diǎn)的四邊形是平行四邊形時,求N點(diǎn)坐

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的解析式為y=﹣x+2,l1x軸交于點(diǎn)B,直線l2經(jīng)過點(diǎn)D(0,5),與直線l1交于點(diǎn)C(﹣1,m),且與x軸交于點(diǎn)A,

(1)求點(diǎn)C的坐標(biāo)及直線l2的解析式;

(2)求ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案