【題目】1)已知:點(diǎn)A和點(diǎn)B(如圖1),根據(jù)條件畫圖(用三角板和量角器):

①畫射線BA

②畫∠ABC90°,使得點(diǎn)C在線段AB上方且ABBC;

③連接AC,畫出∠ABC的角平分線BD,交ACD.通過觀察、度量、猜想獲得線段BD、AC的關(guān)系.

2)已知:如圖2,∠AOB150,OC平分∠AOBAODO,求∠COD的度數(shù).

【答案】1)①如圖1,射線BA為所作;見解析;②如圖1,∠ABC為所作;見解析;③如圖1BD為所作;見解析; BDAC,BDAC;(2)∠COD15°.

【解析】

1)利用幾何語言畫出對應(yīng)的幾何圖形,再通過度量確定線段BD、AC的位置關(guān)系和大小關(guān)系;

2)由角平分線的定義得,再根據(jù)角互余的定義即可得.

1)①如圖1,射線BA為所作

②如圖1,為所作

③如圖1BD為所作;線段BDAC的關(guān)系為:

2平分

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,七(2)班的張明、王強(qiáng)等同學(xué)隨家長一同到某公園游玩,下面是購買門票時(shí),張明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:

張明他們一共去了幾個(gè)成人,幾個(gè)學(xué)生?

請你幫助張明算一算,用哪種方式購票(團(tuán)體購票還是非團(tuán)體購票)更省錢?

說明理由.

正要購票時(shí),張明發(fā)現(xiàn)七(3)班的張小毛等15名同學(xué)和他們的2名家長共17人也來購票,請你為他們設(shè)計(jì)出最省的購票方案,并求出此時(shí)的購票費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1+2+22+23…+22012的值,可令S=1+2+22+23+…+22012,則2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1,仿照以上推理,計(jì)算出1+5+52+53+…+52017的值為(  )

A. 52017﹣1 B. 52018﹣1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律組成的,其中第①個(gè)圖形中一共有1個(gè) 空 心小圓圈,第②個(gè)圖形中一共有6個(gè)空心 小圓圈,第③個(gè)圖形中一共有13個(gè)空 心 小圓圈,…, 按此規(guī)律排列,則第⑦個(gè)圖形中空心小圓圈的個(gè)數(shù)為( )

A. 78 B. 76 C. 63 D. 61

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①點(diǎn)C是線段AB的中點(diǎn),則AC2AB;

1.25°等于125分鐘;

③時(shí)鐘五點(diǎn)整時(shí)針與分針?biāo)鶚?gòu)成的角120°;

④經(jīng)過兩點(diǎn)有且只有一條直線;

⑤利用圓規(guī)配合刻度尺可以進(jìn)行線段的度量,也能比較它們的大。

⑥五邊形的對角線總條數(shù)有10條;

⑦用放大鏡看角,角的度數(shù)會(huì)增大.

其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)AAHx軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=4,cosACH=

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)在x軸上是否存在點(diǎn)P,使三角形PAC是等腰三角形?若存在,請求出P點(diǎn)坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一次,小明坐著輪船由A點(diǎn)出發(fā)沿正東方向AN航行,在A點(diǎn)望湖中小島M,測得∠MAN=30°,航行100米到達(dá)B點(diǎn)時(shí),測得∠MBN=45°,你能算出A點(diǎn)與湖中小島M的距離嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點(diǎn).

1)求證:四邊形BDEC是平行四邊形;

2)連接AD、BE,△ABC添加一個(gè)條件: ,使四邊形DBEA是矩形(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在RtABC中,∠C=90°,AC=9,BC=12,點(diǎn) D、E 分別在邊AC、BC上,且CD:CE=3︰4.將CDE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C落在線段DE上的點(diǎn) F處時(shí),BF恰好是∠ABC的平分線,此時(shí)線段CD的長是________.

查看答案和解析>>

同步練習(xí)冊答案