【題目】(1)如圖1,AB∥CD,求∠A+∠AEC+∠C的度數(shù).
解:過(guò)點(diǎn)E作EF∥AB.
∵EF∥AB(已作)
∴∠A+∠AEF=180°(______)
又∵AB∥CD(已知)
∴EF∥CD(______)
∴∠CEF+∠______=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠A+∠AEF+∠CEF+∠C=360°(等式性質(zhì))
即∠A+∠AEC+∠C=______.
(2)根據(jù)上述解題及作輔助線的方法,在圖2中,AB∥EF,則∠B+∠C+∠D+∠E=______.
(3)根據(jù)(1)和(2)的規(guī)律,圖3中AB∥GF,猜想:∠B+∠C+∠D+∠E+∠F=______.
(4)如圖4,AB∥CD,在B,D兩點(diǎn)的同一側(cè)有M1,M2,M3,…Mn共n個(gè)折點(diǎn),則∠B+∠M1+∠M2+…+∠Mn+∠D的度數(shù)為______(用含n的代數(shù)式表示)
【答案】(1)兩直線平行,同旁內(nèi)角互補(bǔ);平行關(guān)系的傳遞性;C;360°;
(2) 540°; (3) 720; (4) (n+1)×180°
【解析】
(1)如圖1,過(guò)點(diǎn)E作EF∥AB,則EF∥CD,根據(jù)平行線的性質(zhì)得到∠A+∠AEF=180°,∠CEF+∠C=180°,即可得到結(jié)論;
(2)分別過(guò)C,D作CE∥AB,DF∥AB,則CE∥DF∥CD,根據(jù)平行線的性質(zhì)即可得到結(jié)論;
(2)分別過(guò)C,D,E作CG∥DH∥EI∥AB,則CG∥DH∥EI∥CD,根據(jù)平行線的性質(zhì)即可得到結(jié)論;
(4)由(1)(2)(3)知,拐點(diǎn)的個(gè)數(shù)n與角的和之間的關(guān)系是(n+1)180°,于是得到∠B+∠M1+∠M2+…+∠Mn+∠D=(n+1)180°.
解:(1)過(guò)點(diǎn)E作EF∥AB.
∵EF∥AB(已作)
∴∠A+∠AEF=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
又∵AB∥CD(已知)
∴EF∥CD(平行關(guān)系的傳遞性)
∴∠CEF+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠A+∠AEF+∠CEF+∠C=360°(等式性質(zhì))
即∠A+∠AEC+∠C=360°.
(2)如圖2,分別過(guò)C,D作CE∥AB,DF∥AB,則CE∥DF∥CD,
∴∠1+∠B=∠2+∠3=∠4+∠E=180°,
∴∠B+∠C+∠D+∠E=∠1+∠B+∠2+∠3+∠4+∠E=540°=3×180°;
(3)如圖3,分別過(guò)C,D,E作CG∥DH∥EI∥AB,則CG∥DH∥EI∥CD,
∴∠B+∠BCG=180°,∠GCD+∠CDH=180°,∠HDE+∠IED=180°,∠IEF+∠JFE=180°,
∴∠B+∠C+∠D+∠E+∠F=720°;
(4)由(1)(2)(3)知,拐點(diǎn)的個(gè)數(shù)n與角的和之間的關(guān)系是(n+1)180°,
∴∠B+∠M1+∠M2+…+∠Mn+∠D=(n+1)180°.
故答案為:(1)兩直線平行,同旁內(nèi)角互補(bǔ);平行關(guān)系的傳遞性;C;360°;(2)540°;(3)720°;(4)(n+1)×180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=8,BC=6,矩形在直線上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°
至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖②位置……以此類推,這樣連續(xù)旋轉(zhuǎn)2018
次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路線之和是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為正方形ABCD對(duì)角線上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的
⊙ O與BC相切于點(diǎn)E.
(1)求證:CD是⊙ O的切線;
(2)若正方形ABCD的邊長(zhǎng)為10,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)專著,是“算經(jīng)十書(shū)”(漢唐之間出現(xiàn)的十部古算書(shū))中最重要的一種.書(shū)中有下列問(wèn)題:“今有邑方不知大小,各中開(kāi)門(mén),出北門(mén)八十步有木,出西門(mén)二百四十五步見(jiàn)木,問(wèn)邑方有幾何?”意思是:如圖,點(diǎn)、點(diǎn)分別是正方形的邊、的中點(diǎn),,,過(guò)點(diǎn),步,步,則正方形的邊長(zhǎng)為( )
A.步B.步C.步D.步
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)制造廠開(kāi)發(fā)一款新式電動(dòng)汽車(chē),計(jì)劃一年生產(chǎn)安裝輛.由于抽調(diào)不出足夠的熟練工來(lái)完成新式電動(dòng)汽車(chē)的安裝,工廠決定招聘一些新工人.他們經(jīng)過(guò)培訓(xùn)后上崗,也能獨(dú)立進(jìn)行電動(dòng)汽車(chē)的安裝.生產(chǎn)開(kāi)始后,調(diào)研部門(mén)發(fā)現(xiàn):名熟練工和名新工人每月可安裝輛電動(dòng)汽車(chē);名熟練工和名新工人每月可安裝輛電動(dòng)汽車(chē).
(1)每名熟練工和新工人每月分別可以安裝多少輛電動(dòng)汽車(chē)?
(2)如果工廠招聘名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB于E,∠CDB=15°,OE=2.
(1)求⊙O的半徑;
(2)將△OBD繞O點(diǎn)旋轉(zhuǎn),使弦BD的一個(gè)端點(diǎn)與弦AC的一個(gè)端點(diǎn)重合,則弦BD與弦AC的夾角為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的一角平分線分一邊為 3cm 和 4cm 兩部分,則這個(gè)矩形的對(duì)角線的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)P在AD邊上以每秒1cm 的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有__次.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com