【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)y= 交于C、D兩點(diǎn).已知點(diǎn)C坐標(biāo)為(﹣4,﹣1),點(diǎn)D的橫坐標(biāo)為2.

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點(diǎn)P為坐標(biāo)軸上一點(diǎn),且SACP=2SABO , 請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

【答案】
(1)

解:∵點(diǎn)C坐標(biāo)為(﹣4,﹣1)在反比例函數(shù)y= 的圖象上,

∴﹣1= ,

解得:n=4,

∴反比例函數(shù)的解析式為:y=

∵點(diǎn)D的橫坐標(biāo)為2,

∴y= =2,

∴點(diǎn)D(2,2),

將點(diǎn)C與D代入一次函數(shù)解析式,可得: ,

解得: ,

∴一次函數(shù)的解析式的解析式為:y= x+1;


(2)

解:如圖

∵一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),

∴A(﹣2,0),B(0,1),

∴SABO= ×2×1=1,

∴SACP=2SABO=2,

若點(diǎn)P在x軸上,則AP=4,

∴點(diǎn)P的坐標(biāo)為:(﹣6,0)或(2,0),

若點(diǎn)P在y軸上,則SACP=SBCP﹣SABP= ×4×BP﹣ ×BP×2=2,

∴BP=2,

∴點(diǎn)P(0,3)或(0,﹣1).

綜上可得:點(diǎn)P的坐標(biāo)為:(﹣6,0),(2,0),(0,3)或(0,﹣1).


【解析】(1)由一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)y= 交于C、D兩點(diǎn).已知點(diǎn)C坐標(biāo)為(﹣4,﹣1),點(diǎn)D的橫坐標(biāo)為2,利用待定系數(shù)法即可求得反比例函數(shù)與一次函數(shù)的解析式;(2)分別從點(diǎn)P在x軸上與在y軸上,去分析求解即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,兩個(gè)建筑物AB和CD的水平距離為30m,張明同學(xué)住在建筑物AB內(nèi)10樓P室,他觀測(cè)建筑物CD樓的頂部D處的仰角為30°,測(cè)得底部C處的俯角為45°,求建筑物CD的高度.( 取1.73,結(jié)果保留整數(shù).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,ECD中點(diǎn),連結(jié)OE.過(guò)點(diǎn)CCFBD交線段OE的延長(zhǎng)線于點(diǎn)F,連結(jié)DF.求證:

(1)ODE≌△FCE;

(2)四邊形ODFC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD各頂點(diǎn)的坐標(biāo)分別為A(0,1)、B(5,1)、C(7,3)、D(2,5).

(1)在如圖所示的平面直角坐標(biāo)系畫出該四邊形;

(2)四邊形ABCD的面積是________;

(3)四邊形ABCD內(nèi)(邊界點(diǎn)除外)一共有_____個(gè)整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明統(tǒng)計(jì)了他家今年5月份打電話的次數(shù)及通話時(shí)間,并列出了頻數(shù)分布表:

通話時(shí)間x/分鐘

0<x≤5

5<x≤10

10<x≤15

15<x≤20

頻數(shù)(通話次數(shù))

20

16

9

5

5月份通話次數(shù)中,通話時(shí)間不超過(guò)15分鐘的所占百分比是( 。

A. 10% B. 40% C. 50% D. 90%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃購(gòu)買籃球、排球共20個(gè),購(gòu)買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買3個(gè)籃球的費(fèi)用與購(gòu)買5個(gè)排球的費(fèi)用相同。

(1)籃球和排球的單價(jià)各是多少元?

(2)若購(gòu)買籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿足要求的所有購(gòu)買方案,并直接寫出其中最省錢的購(gòu)買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是⊙O的內(nèi)接三角形且AB=AC,BD是⊙O的直徑,過(guò)點(diǎn)A做AP∥BC交DB的延長(zhǎng)線于點(diǎn)P,連接AD.

(1)求證:AP是⊙O的切線;
(2)若⊙O的半徑是2,cos∠ABC= ,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=30°,點(diǎn)M、N分別在邊OA、OB上,且OM=1,ON=3,點(diǎn)P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是____________

查看答案和解析>>

同步練習(xí)冊(cè)答案