【題目】如圖,RtAOB中,∠AOB90°,頂點(diǎn)AB分別在反比例函數(shù)yx0)與yx0)的圖象上,則tanBAO的值為 ____

【答案】2

【解析】

過(guò)AACx軸于C,過(guò)BBDx軸于D,得到∠BDO=ACO=90°,根據(jù)反比例函數(shù)的性質(zhì)得到SBDO=2,SAOC=,根據(jù)相似三角形的面積比等于相似比的平方即可求出OBOA的比值,從而得到性質(zhì)得到tanBAO的值.

解:過(guò)AACx軸,過(guò)BBDx軸于D


則∠BDO=ACO=90°,
AB分別在反比例函數(shù)yx0)與yx0)的圖象上,
SBDO=2,SAOC=,
∵∠AOB=90°,
∴∠BOD+DBO=BOD+AOC=90°
∴∠DBO=AOC,
∴△BDO∽△OCA
,
,
tanBAO=,
故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12020326日全國(guó)新冠疫情數(shù)據(jù)表,圖2328日海外各國(guó)疫情統(tǒng)計(jì)表,圖3是中國(guó)和海外的病死率趨勢(shì)對(duì)比圖,根據(jù)這些圖表,選出下列說(shuō)法中錯(cuò)誤的一項(xiàng)(

A.1顯示每天現(xiàn)有確診數(shù)的增加量=累計(jì)確診增加量-治愈人數(shù)增加量-死亡人數(shù)增加量.

B.2顯示美國(guó)累計(jì)確診人數(shù)雖然約是德國(guó)的兩倍,但每百萬(wàn)人口的確診人數(shù)大約只有德國(guó)的一半.

C.2顯示意大利當(dāng)前的治愈率高于西班牙.

D.3顯示大約從316日開(kāi)始海外的病死率開(kāi)始高于中國(guó)的病死率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,軸,垂足為,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到的位置,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在直線上,再將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到的位置,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在直線上,依次進(jìn)行下去......若點(diǎn)的坐標(biāo)是,則點(diǎn)的縱坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生物小組觀察一植物生長(zhǎng),得到的植物高度y(單位:厘米)與觀察時(shí)間x(單位:天)的關(guān)系,并畫(huà)出如圖所示的圖象(AC是線段,直線CD平行于x軸).下列說(shuō)法正確的是( ).

①?gòu)拈_(kāi)始觀察時(shí)起,50天后該植物停止長(zhǎng)高;

②直線AC的函數(shù)表達(dá)式為

③第40天,該植物的高度為14厘米;

④該植物最高為15厘米.

A.①②③B.②④C.②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CAB上一點(diǎn),點(diǎn)DE分別位于AB的異側(cè),ADBE,且AD=BC,AC=BE

1)求證:CD=CE

2)當(dāng)時(shí),求BF的長(zhǎng);

3)若∠A=α,∠ACD=25°,且△CDE的外心在該三角形的外部,請(qǐng)直接寫(xiě)出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx-5的經(jīng)過(guò)點(diǎn)(-2,-15)、點(diǎn)(2,1).

1)求拋物線的表達(dá)式;

2)請(qǐng)用配方法求拋物線頂點(diǎn)A的坐標(biāo);

3)已知點(diǎn)M坐標(biāo)為(2—1).設(shè)動(dòng)點(diǎn)P、Q分別在拋物線和對(duì)稱軸上,當(dāng)以A,P,QM為頂點(diǎn)的四邊形是平行四邊形時(shí),求PQ兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ACB=90°ABC=25°,OAB的中點(diǎn). OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ °OP0<θ<180,當(dāng)BCP恰為軸對(duì)稱圖形時(shí),θ的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于兩點(diǎn),與軸交于點(diǎn)

(1)請(qǐng)直接寫(xiě)出ABC三點(diǎn)的坐標(biāo):

A B C

(2)點(diǎn)P從點(diǎn)A出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q 從點(diǎn)B出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),

① 當(dāng)t為何值時(shí),BPBQ?

② 是否存在某一時(shí)刻t,使△BPQ是直角三角形?若存在,請(qǐng)求出所有符合條件的t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線過(guò)點(diǎn),且與直線交于BC兩點(diǎn),點(diǎn)B的坐標(biāo)為

1)求拋物線的解析式;

2)點(diǎn)D為拋物線上位于直線上方的一點(diǎn),過(guò)點(diǎn)D軸交直線于點(diǎn)E,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)線段的長(zhǎng)度最大時(shí),求的最小值;

3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案