解答:解:(1)∵A(3,5),B(3,1),
∴直線AB的方程為x=3,
∵拋物線y=x
2+kx+5的對(duì)稱軸為x=-
,
∴-
=3,
∴k=-6,
∴y=x
2-6x+5,
令y=0,x
2-6x+5=0,
解得x
1=1,x
2=5,
∴拋物線與x軸的交點(diǎn)坐標(biāo)為(1,0),(5,0);
(2)設(shè)AB與x軸交于點(diǎn)Q.
∵A(3,5),B(3,1),C(7,5),
∴AB=AC=4,BC=
=4
,
∴∠BAC=90°,∠ACB=∠ABC=45°.
①當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),0≤t≤2,
∵PA=2t,A(3,5),
∴PQ=AQ-AP=5-2t,
∴此時(shí)點(diǎn)P的坐標(biāo)(3,5-2t);
②當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),2<t≤4,
如圖,過點(diǎn)P作PD⊥x軸于點(diǎn)D,PE⊥AB于點(diǎn)E.
∵PB=2
(t-2),
∴PE=BE=2(t-2)=2t-4,
∴OD=OQ+QD=OQ+PE=3+2t-4=2t-1,PD=EQ=BE+BQ=2t-4+1=2t-3,
∴此時(shí)點(diǎn)P的坐標(biāo)(2t-1,2t-3);
③當(dāng)點(diǎn)P在CA上運(yùn)動(dòng)時(shí),4<t≤6時(shí),
∵CP=2(t-4)=2t-8,
∴點(diǎn)P的橫坐標(biāo)=OQ+AP=OQ+AC-CP=3+4-(2t-8)=15-2t,
點(diǎn)P的縱坐標(biāo)=AQ=5,
∴點(diǎn)P的坐標(biāo)(15-2t,5);
(3)設(shè)經(jīng)過t秒時(shí),點(diǎn)P運(yùn)動(dòng)到點(diǎn)Q,即第一次剛好進(jìn)入?yún)^(qū)域M,
由題意,得(2+1)t=5,
解得t=
,
即當(dāng)t=
時(shí),點(diǎn)P第一次剛好進(jìn)入?yún)^(qū)域M;
設(shè)拋物線與x軸的交點(diǎn)坐標(biāo)為G(1,0),F(xiàn)(5,0),則QG=QF=2.
分兩種情況:
①當(dāng)點(diǎn)P在AB和BC上運(yùn)動(dòng),從點(diǎn)P運(yùn)動(dòng)到Q點(diǎn)開始進(jìn)入?yún)^(qū)域M,到運(yùn)動(dòng)到F點(diǎn)離開區(qū)域M.
當(dāng)△ABC平移到△A′B′C′的位置時(shí),點(diǎn)P運(yùn)動(dòng)到F點(diǎn),
∵△PQB′是等腰直角三角形,
∴QB′=PQ=2,
∴t=
=1+2=3,
∴
≤t≤3;
②當(dāng)點(diǎn)P在CA上運(yùn)動(dòng),從點(diǎn)P運(yùn)動(dòng)到F點(diǎn)開始進(jìn)入?yún)^(qū)域M,一直到A點(diǎn).
當(dāng)△ABC平移到△A″B″C″的位置時(shí),點(diǎn)P運(yùn)動(dòng)到F點(diǎn),
∵A″P=QF=2,
∴C″P=A″C″-A″P=4-2=2,
∴t=4+
=5,
∴5≤t≤6.
綜上所述,符合條件的t值是
≤t≤3或5≤t≤6.