【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出“遼陽—葫蘆島海濱觀光一日游”項(xiàng)目,團(tuán)隊(duì)人均報(bào)名費(fèi)用y(元)與團(tuán)隊(duì)報(bào)名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88元.旅行社收到的團(tuán)隊(duì)總報(bào)名費(fèi)用為w(元).
(1)直接寫出當(dāng)x≥20時(shí),y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)兒童節(jié)當(dāng)天旅行社收到某個(gè)團(tuán)隊(duì)的總報(bào)名費(fèi)為3000元,報(bào)名旅游的人數(shù)是多少?
(3)當(dāng)一個(gè)團(tuán)隊(duì)有多少人報(bào)名時(shí),旅行社收到的總報(bào)名費(fèi)最多?最多總報(bào)名費(fèi)是多少元?
【答案】(1);(2)30;(3)36人,3168元.
【解析】
(1)直接利用待定系數(shù)法求出一次函數(shù)解析式即可,注意旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88元可得x的取值;
(2)利用利潤=人均報(bào)名費(fèi)用y×團(tuán)隊(duì)報(bào)名人數(shù)x=3000,列方程解出即可,并計(jì)算人均報(bào)名費(fèi)用,由旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88元進(jìn)行取舍;
(3)配方成頂點(diǎn)式后,求出二次函數(shù)最值即可.
:(1)設(shè)y=kx+b,
把(20,120)和(32,96)代入得:,
解得:,
y與x之間的函數(shù)關(guān)系式為:y=-2x+160;
∵旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88元,
當(dāng)y≥88時(shí),-2x+160≥88,
x≤36,
∴y與x之間的函數(shù)關(guān)系式為:y=-2x+160(20≤x≤36);
(2)20×120=2400<3000,
由題意得:w=xy=x(-2x+160)=3000,
-2x2+160x-3000=0,
x2-80x+1500=0,
(x-50)(x-30)=0,
x=50或30,
當(dāng)x=50時(shí),y==60,不符合題意,舍去,
當(dāng)x=30時(shí),y==100>88,符合題意,
答:報(bào)名旅游的人數(shù)是30人;
(3)w=xy=x(-2x+160)=-2x2+160x=-2(x2-80x+1600-1600)=-2(x-40)2+3200,
∵-2<0,
∴x<40,w隨x的增大而增大,
∵x=36時(shí),w有最大值為:-2(36-40)2+3200=3168,
∴當(dāng)一個(gè)團(tuán)隊(duì)有36人報(bào)名時(shí),旅行社收到的總報(bào)名費(fèi)最多,最多總報(bào)名費(fèi)是3168元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王是“新星廠”的一名工人,請(qǐng)你閱讀下列信息:
信息一:工人工作時(shí)間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見下表:
生產(chǎn)甲種產(chǎn)品數(shù)(件) | 生產(chǎn)乙種產(chǎn)品數(shù)(件) | 所用時(shí)間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;
信息四:該廠工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請(qǐng)根據(jù)以上信息,解答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某中學(xué)數(shù)學(xué)活動(dòng)小組為了調(diào)查居民的用水情況,從某社區(qū)的戶家庭中隨機(jī)抽取了戶家庭的月用水量,結(jié)果如下表所示:
月用水量(噸) | |||||||
戶數(shù) |
(1)求這戶家庭月用水量的平均數(shù)、眾數(shù)和中位數(shù);
(2)根據(jù)上述數(shù)據(jù),試估計(jì)該社區(qū)的月用水量;
(3)由于我國水資源缺乏,許多城市常利用分段計(jì)費(fèi)的辦法引導(dǎo)人們節(jié)約用水,即規(guī)定每個(gè)家庭的月基本用水量為(噸),家庭月用水量不超過(噸)的部分按原價(jià)收費(fèi),超過(噸)的部分加倍收費(fèi).你認(rèn)為上述問題中的平均數(shù)、眾數(shù)和中位數(shù)中哪一個(gè)量作為月基本用水量比較合理?簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】再讀教材:
寬與長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計(jì),下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個(gè)正方形,然后把紙片展平.
第二步,如圖②.把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對(duì)角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點(diǎn)D折出 DE,使 DE⊥ND,則圖④中就會(huì)出現(xiàn)黃金矩形,
問題解決:
(1)圖③中AB=________(保留根號(hào));
(2)如圖③,判斷四邊形 BADQ的形狀,并說明理由;
(3)請(qǐng)寫出圖④中所有的黃金矩形,并選擇其中一個(gè)說明理由.
(4)結(jié)合圖④.請(qǐng)?jiān)诰匦?/span> BCDE中添加一條線段,設(shè)計(jì)一個(gè)新的黃金矩形,用字母表示出來,并寫出它的長(zhǎng)和寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水晶廠生產(chǎn)的水晶工藝品非常暢銷,某網(wǎng)店專門銷售這種工藝品.成本為30元/件,每天銷售y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,當(dāng)x=40時(shí),y=300;當(dāng)x=55時(shí),y=150.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天工藝品的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該工藝品銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB=CD,AD=BC,點(diǎn)E在CD上,連接AE并延長(zhǎng),交BC的延長(zhǎng)線于F.
(1)求證:△ADE∽△FCE;
(2)若AB=4,AD=6,CF=2,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)B、C的坐標(biāo)分別為(3,4)、(4,2),且AB平行于x軸,將Rt△ABC向左平移,得到Rt△A′B′C′.若點(diǎn)B′、C′同時(shí)落在函數(shù)y=(x>0)的圖象上,則k的值為( )
A.2B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年某園林綠化公司購回一批香樟樹,全部售出后利潤率為20%.
(1)求 2016年每棵香樟樹的售價(jià)與成本的比值.
(2)2017年,該公司購入香樟樹數(shù)量增加的百分?jǐn)?shù)與每棵香樟樹成本降低的百分?jǐn)?shù)均為a,經(jīng)測(cè)算,若每棵香樟樹售價(jià)不變,則總成本將比2016年的總成本減少8萬元;若每棵香樟樹售價(jià)提高百分?jǐn)?shù)也為a,則銷售這批香樟樹的利潤率將達(dá)到4a.求a的值及相應(yīng)的2017年購買香樟樹的總成本.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com